SLIM 3D: an advanced numerical model for geophysical and environmental flows

Philippe Delandmeter^{1,2}, Jonathan Lambrechts¹, Vincent Legat¹, Jean-François Remacle¹, Eric Deleersnijder¹

¹ Université catholique de Louvain, Belgium
² Utrecht University, the Netherlands

Puerto Chacabuco, Chile - October 11th, 2017

Personal background

PhD: Université catholique de Louvain, Belgium

- Numerical modelling: Development of SLIM 3D
- Geophysical and environmental applications

Post-doc: Utrecht University, the Netherlands

- Numerical modelling: Development of Parcels
- Tracking plastic litter in the ocean

Geophysical and environmental flows

www.gsfc.nasa.gov

Geophysical and environmental flows

Coastal seas

- 8% of ocean surface
- $\bullet\ < 1\%$ ocean volume

- Very active biologically
- \sim 60% of world population lives < 60 km of the coast !

- Sediment
- Coral larvae, turtle hatchlings, plastic debris
- Tides, storm surge
- Salmon farming

www.math.mit.edu

Sediment

- Coral larvae, turtle hatchlings, plastic debris
- Tides, storm surge
- Salmon farming

[[]Bainbridge et al., 2012]

- Sediment
- Coral larvae, turtle hatchlings, plastic debris
- Tides, storm surge
- Salmon farming

www.oceanservice.noaa.gov

- Sediment
- Coral larvae, turtle hatchlings, plastic debris
- Tides, storm surge
- Salmon farming

www.howtoconserve.org

- Sediment
- Coral larvae, turtle hatchlings, plastic debris
- Tides, storm surge
- Salmon farming

www.edition.cnn.com

- Sediment
- Coral larvae, turtle hatchlings, plastic debris
- Tides, storm surge
- Salmon farming

www.csiro.au

- Sediment
- Coral larvae, turtle hatchlings, plastic debris
- Tides, storm surge
- Salmon farming

• But it's complex !

Contents

A DG finite element model SLIM

Adaptive meshes Lake Tanganyika

Sediment transport Burdekin River

Contents

A DG finite element model SLIM

Adaptive meshes Lake Tanganyika

Sediment transport Burdekin River

SLIM, the Second-generation Louvain-la-Neuve Ice-ocean Model

Spatial discretisation

- Unstructured meshes
 - Finite element method:
 - discontinuous Galerkin (DG) formulation

Approximation on unstructured meshes

Approximation on unstructured meshes

Approximation on unstructured meshes

The Great Barrier Reef, Australia

Tidal circulation in a complex topography

Beverlac and Hull

The Great Barrier Reef, Australia

Tidal circulation in a complex topography

Tidal generated eddies

2 . km

Contents

A DG finite element model SLIM

Adaptive meshes Lake Tanganyika

Sediment transport Burdekin River

Delandmeter et al., 2017, A fully consistent and conservative vertically adaptive coordinate system for SLIM 3D, a DG finite element hydrodynamic model, with an application to the thermocline oscillations of Lake Tanganyika, *Geoscientific Model Development*, (submitted)

Vertical discretisation

• Unstructured horizontally

Vertical discretisation

- Unstructured horizontally
- Structured vertically

Vertical discretisation

- Unstructured horizontally
- Structured vertically

Lake Tanganyika: thermocline oscillations

Lake Tanganyika: thermocline oscillations

Temperature vertical profile

Modelling lake thermocline oscillations using adaptive meshes

- Main processes of Tanganyika dynamics reproduced by the model
- Surface heat fluxes
- Reduced computational cost

Contents

A DG finite element model SLIM

Adaptive meshes Lake Tanganyika

Sediment transport Burdekin River

Delandmeter et al., 2015, The transport and fate of riverine fine sediment exported to a semi-open system, *Estuarine, Coastal and Shelf Science*, 67, 897 – 913

Modelling

Numerics

- \sim 65,000 3D elements
- Simulation on 128 CPUs

Forcings

- Boundary conditions
- Surface wind stress
- River flow and concentrations

Modelling

Numerics

- \sim 65,000 3D elements
- Simulation on 128 CPUs

Forcings

- Boundary conditions
- Surface wind stress
- River flow and concentrations

Sediment transport

- Sediment is a passive tracer
- Settling velocity is proportionnal to sediment concentration

- Resuspension due to entrainment
- Resuspension due to turbulent mixing

Model validation

- Satellite data (flood and dry seasons)
- Sea surface concentrations (flood season)

Model validation

- Satellite data (flood and dry seasons)
- Sea surface concentrations (flood season)

Results: Predicted annual budget

Results: sedimentation areas

Sediment transport into semi-open systems

- Semi-open systems trap most of the riverine sediment. (\sim 67% for Burdekin River)
- Wind-driven resuspension events redistribute the sediment within an embayment.
- Fate of sediment is strongly related to wind conditions during flood event.

Contents

A DG finite element model SLIM

Adaptive meshes Lake Tanganyika

Sediment transport Burdekin River

Puyuhuapi Channel ?

Puyuhuapi Channel

- Surface heat fluxes (~ Tanganyika)
- Sharp bathymetry (\simeq Tanganyika)

Modelling fjord and channel dynamics with SLIM 3D

- Unstructured mesh ideal for complex topography
- SLIM 3D used in river plume dynamics
- Easy plugin of ecological modules
- Open access open source

Modelling fjord and channel dynamics with SLIM 3D

- Unstructured mesh ideal for complex topography
- SLIM 3D used in river plume dynamics
- Easy plugin of ecological modules
- Open access open source

Thank you for your attention !

Hydrodynamics: the equations

Hydrodynamics: the equations

- Conservativity: Tracer total mass is conserved
- Consistency: Constant tracer is conserved

- Conservativity: Tracer total mass is conserved
- Consistency: Constant tracer is conserved

• Coherence between the discrete formulation of moving mesh, continuity and tracer equations

Vertical discretisation (2)

Number of levels: constant

Vertical discretisation (2)

Internal seiche (initial condition)

Internal seiche (after half an oscillation)

30

Convergence analysis

Adaptive mesh efficiency

- Speed-up of 16 for similar accuracy
- Minimal number of levels: 6

Lake Tanganyika: thermocline oscillations

Preliminary simulation

- Uniform wind
- No vertical diffusivity

Burdekin River sediment

Where does the sediment end up ?

