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Personal background
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Geophysical and environmental flows
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Geophysical and environmental flows

Coastal seas
e 8% of ocean surface e Very active biologically

e < 1% ocean volume e ~ 60% of world population lives
< 60 km of the coast !
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of geophysical and environmental flows
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Numerical modelling

of geophysical and environmental flows

e Sediment
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Numerical modelling
of geophysical and environmental flows

e Sediment

e Coral larvae, turtle
hatchlings, plastic
debris
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Numerical modelling
of geophysical and environmental flows
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e Sediment

e Coral larvae, turtle
hatchlings, plastic
debris

e Tides, storm surge
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Sediment

Coral larvae, turtle
hatchlings, plastic
debris

Tides, storm surge

Salmon farming
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Numerical modelling
of geophysical and environmental flows

e Sediment

e Coral larvae, turtle
hatchlings, plastic
debris

e Tides, storm surge

e Salmon farming

e But it's complex !
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A DG finite element model
SLIM
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SLIM, the Second-generation
Louvain-la-Neuve lce-ocean Model
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Spatial discretisation

e Unstructured meshes

e Finite element method:
discontinuous Galerkin (DG) formulation
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Approximation on unstructured meshes



Approximation on unstructured meshes




Approximation on unstructured meshes




The Great Barrier Reef, Australia

Tidal circulation
in a complex topography

Beverlac and Hull 10



The Great Barrier Reef, Australia

Tidal circulation
in a complex topography
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Beverlac and Hull 10




evation (m}
0.9

velecity (mysh

oag 27 Feb 2015 o
s 0020 UTC pessss

o
N

.
g
T

o

o
e e Y \s
S
e S
L
i

ey
=

11



Contents

L. iso - 26° depth (m)
100

Adaptive meshes
Lake Tanganyika

Delandmeter et al., 2017, A fully consistent and conservative
vertically adaptive coordinate system for SLIM 3D, a DG
finite element hydrodynamic model, with an application to the
thermocline oscillations of Lake Tanganyika, Geoscientific Model
Development, (submitted)




Vertical discretisation

e Unstructured horizontally

13



Vertical discretisation

e Unstructured horizontally

e Structured vertically

>
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Vertical discretisation

e Unstructured horizontally

e Structured vertically

>
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Lake Tanganyika: thermocline oscillations
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Lake Tanganyika

- thermocline oscillations
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Temperature vertical profile

Surface input data
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Model result
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Modelling lake thermocline oscillations
using adaptive meshes

e Main processes of Tanganyika dynamics reproduced by the
model

e Surface heat fluxes

e Reduced computational cost

[ I Temperature (°C)
23.5 24.75 26
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Salinity - model

Sediment transport
Burdekin River

Delandmeter et al., 2015, The transport and fate of riverine fine
sediment exported to a semi-open system, Estuarine, Coastal
and Shelf Science, 67, 897 — 913



Modelling

Numerics
e ~ 65,000 3D elements

e Simulation on 128 CPUs

Forcings
e Boundary conditions
e Surface wind stress

e River flow and concentrations




Modelling

Numerics
e ~ 65,000 3D elements

e Simulation on 128 CPUs

Forcings
e Boundary conditions
e Surface wind stress
e River flow and concentrations
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Sediment transport

Wet season ]

[ Dry season ]

NS N
Freshwater plume

Wet river

Deposited sediment

e Sediment is a passive tracer

e Settling velocity is
proportionnal to sediment
concentration

Dry river

&_
&

e Resuspension due to
entrainment

e Resuspension due to
turbulent mixing
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Model validation

e Satellite data (flood and dry seasons)

e Sea surface concentrations (flood season)

Feb 11, 2007 &
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Model validation

e Satellite data (flood and dry seasons)

e Sea surface concentrations (flood season)
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Results: Predicted annual budget

Bowling Green Bay 5%
Abbot Bay (inner shelf) 6 % N \
Abbot Bay (middle shelf) 7% ~_

Cleveland Bay 0.09 % —
deposited outside the Bays 1% 7

in suspension 2 %

l ~ Upstart Bay 67 %
left the domain 12 %
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Results: sedimentation areas

Orpin et al. (2004) Lewis et al. (2014) SLIM 3D

s

— 50 % zone
— 80 % zone
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Sediment transport into semi-open systems

e Semi-open systems trap most of the riverine sediment.
(~ 67% for Burdekin River)

e Wind-driven resuspension events redistribute the sediment
within an embayment.

e Fate of sediment is strongly related to wind conditions during
flood event.
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Puyuhuapi Channel

Puyuhuapi, Chile

Features

e Coastal dynamics (=~ Burdekin)

e Surface heat fluxes (~ Tanganyika)

e Sharp bathymetry (~ Tanganyika) 2



Modelling fjord and channel dynamics with SLIM 3D

DR 0es e Unstructured mesh ideal for

complex topography

e SLIM 3D used in river plume
dynamics

e Easy plugin of ecological
modules

° Open aCcess — open source

Salirity

26



Modelling fjord and channel dynamics with SLIM 3D

DR 0es e Unstructured mesh ideal for

complex topography

e SLIM 3D used in river plume
dynamics

e Easy plugin of ecological
modules

° Open aCcess — open source

Salirity

—_— e Thank you for your attention !

26



Hydrodynamics: the equations

. A . .
Momentum conservation Continuity
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Hydrodynamics: the equations

Momentum conservation
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Vertically adaptive meshes
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Vertically adaptive meshes
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Vertically adaptive meshes

e Conservativity: Tracer total
mass is conserved

e Consistency: Constant tracer
is conserved
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Vertically adaptive meshes

e Conservativity: Tracer total
mass is conserved

e Consistency: Constant tracer
is conserved
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Vertically adaptive meshes
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Vertically adaptive meshes
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Vertically adaptive meshes
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Vertically adaptive meshes

e Coherence between the
discrete formulation of
moving mesh, continuity
and tracer equations
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Vertical discretisation (2)

Puyuhuapi, Chile

Number of levels: constant
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Vertical discretisation (2)

Number of levels: non constant

Lake Tanganyika, East Africa
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Internal seiche (initial condition)
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Internal seiche (after half an oscillation)
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Convergence analysis

Thermocline depth (m)

# layers
10
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— 320
6 adapt
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Adaptive mesh efficiency

e Speed-up of 16 for similar accuracy

e Minimal number of levels: 6

Time
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Lake Tanganyika: thermocline oscillations

Preliminary simulation

e Uniform wind

e No vertical diffusivity

Fixed mesh

T |

Adaptive mesh

. I Temperature (°C)
23.5 24.75 26
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Burdekin River sediment

No deposition
over last 1500 years

Burdeki -
urdekin
nglf'_{?

[Orpin et al., 2004] [Lewis et al., 2014j

Where does the sediment end up ?
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Unstructured meshes: 1D example

Temperature [°C]
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Unstructured meshes: 1D example

Temperature [°C]

QO
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Unstructured meshes: 1D example

Temperature [°C]
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Unstructured meshes: 1D example
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Unstructured meshes: 2D example
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Unstructured meshes: 2D example
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Unstructured meshes: 2D example
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Unstructured meshes:

2D example
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Unstructured meshes: 2D example
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