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Personal background

PhD: Université catholique de Louvain,
Belgium

• Numerical modelling:
Development of SLIM 3D

• Geophysical and environmental
applications

Post-doc: Utrecht University,
the Netherlands

• Numerical modelling:
Development of Parcels

• Tracking plastic litter in the ocean
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Geophysical and environmental flows

www.gsfc.nasa.gov

Coastal seas
• 8% of ocean surface

• < 1% ocean volume

• Very active biologically

• ∼ 60% of world population lives
< 60 km of the coast !

www.gsfc.nasa.gov
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Numerical modelling
of geophysical and environmental flows

• Sediment

• Coral larvae, turtle
hatchlings, plastic
debris

• Tides, storm surge

• Salmon farming

But it’s complex !

www.math.mit.edu
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Numerical modelling
of geophysical and environmental flows

• Sediment

• Coral larvae, turtle
hatchlings, plastic
debris

• Tides, storm surge

• Salmon farming

But it’s complex !

[Bainbridge et al., 2012]
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Numerical modelling
of geophysical and environmental flows

• Sediment

• Coral larvae, turtle
hatchlings, plastic
debris

• Tides, storm surge

• Salmon farming

But it’s complex !

www.oceanservice.noaa.gov
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Numerical modelling
of geophysical and environmental flows

• Sediment

• Coral larvae, turtle
hatchlings, plastic
debris

• Tides, storm surge

• Salmon farming

But it’s complex ! www.howtoconserve.org
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Numerical modelling
of geophysical and environmental flows

• Sediment

• Coral larvae, turtle
hatchlings, plastic
debris

• Tides, storm surge

• Salmon farming

But it’s complex !

www.edition.cnn.com
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Numerical modelling
of geophysical and environmental flows

• Sediment

• Coral larvae, turtle
hatchlings, plastic
debris

• Tides, storm surge

• Salmon farming

But it’s complex !

www.csiro.au
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Numerical modelling
of geophysical and environmental flows

• Sediment

• Coral larvae, turtle
hatchlings, plastic
debris

• Tides, storm surge

• Salmon farming

• But it’s complex !
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SLIM, the Second-generation
Louvain-la-Neuve Ice-ocean Model

Hydrodynamics

Salinity and
temperature

Density

Sediment

Particles



Spatial discretisation

• Unstructured meshes

• Finite element method:
discontinuous Galerkin (DG) formulation
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Approximation on unstructured meshes
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The Great Barrier Reef, Australia
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Tidal generated eddies
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Lake Tanganyika

Sediment transport
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Puyuhuapi Channel ?
Delandmeter et al., 2017, A fully consistent and conservative
vertically adaptive coordinate system for SLIM 3D, a DG
finite element hydrodynamic model, with an application to the
thermocline oscillations of Lake Tanganyika, Geoscientific Model
Development, (submitted)
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Vertical discretisation

• Unstructured horizontally

• Structured vertically
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Lake Tanganyika: thermocline oscillations
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Temperature vertical profile
Surface input data

Model result

Data Temperature [◦C]
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Modelling lake thermocline oscillations
using adaptive meshes

• Main processes of Tanganyika dynamics reproduced by the
model

• Surface heat fluxes

• Reduced computational cost
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Temperature (◦C)

100 km
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Fixed mesh

Adaptive mesh

Adaptive mesh
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Modelling
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Sediment transport

Freshwater plume

Salty seawater
Deposited sediment

Wet river

Wet season

Dry river

Dry season

• Sediment is a passive tracer

• Settling velocity is
proportionnal to sediment
concentration

• Resuspension due to
entrainment

• Resuspension due to
turbulent mixing
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Model validation
• Satellite data (flood and dry seasons)

• Sea surface concentrations (flood season)
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Model validation
• Satellite data (flood and dry seasons)

• Sea surface concentrations (flood season)
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Results: Predicted annual budget

Jan 07 Apr 07 Jul 07 Oct 07 Jan 08
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Deposited mass
Accumulated mass discharged

by the river

suspended mass

Upstart Bay 67%

Bowling Green Bay 5%

Abbot Bay (inner shelf) 6%

Abbot Bay (middle shelf) 7%
Cleveland Bay 0.09%

deposited outside the Bays 1%

in suspension 2%

left the domain 12%
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Results: sedimentation areas

Orpin et al. (2004) Lewis et al. (2014) SLIM 3D

Burdekin mouth
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Sediment transport into semi-open systems

• Semi-open systems trap most of the riverine sediment.
(∼ 67% for Burdekin River)

• Wind-driven resuspension events redistribute the sediment
within an embayment.

• Fate of sediment is strongly related to wind conditions during
flood event.
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Puyuhuapi Channel

Puyuhuapi, Chile

Features
• Coastal dynamics (' Burdekin)

• Surface heat fluxes (' Tanganyika)

• Sharp bathymetry (' Tanganyika) 25



Modelling fjord and channel dynamics with SLIM 3D

• Unstructured mesh ideal for
complex topography

• SLIM 3D used in river plume
dynamics

• Easy plugin of ecological
modules

• Open access – open source

Thank you for your attention !
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Hydrodynamics: the equations
Momentum conservation

⊗

Continuity

Momentum conservation 2D

⊗

Continuity 2D

Momentum conservation
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Vertically adaptive meshes

x

z

• Conservativity: Tracer total
mass is conserved

• Consistency: Constant tracer
is conserved

• Coherence between the
discrete formulation of
moving mesh, continuity
and tracer equations
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Vertical discretisation (2)

Puyuhuapi, Chile

Number of levels: constant

Lake Tanganyika, East Africa

Number of levels: non constant
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Internal seiche (initial condition)
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Internal seiche (after half an oscillation)
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Convergence analysis

Time

Thermocline depth (m)
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Adaptive mesh efficiency

• Speed-up of 16 for similar accuracy

• Minimal number of levels: 6
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Lake Tanganyika: thermocline oscillations

Preliminary simulation

• Uniform wind

• No vertical diffusivity
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Burdekin River sediment

[Orpin et al., 2004]

5-10%

80-90%

5-10%

[Lewis et al., 2014]

x x

4000 year old sed.

x
9.4 mm/year

x

No deposition
over last 1500 years

x

25 mm/year

Where does the sediment end up ?
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Unstructured meshes: 1D example
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Unstructured meshes: 2D example
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