

Ministerio del Medio Ambiente
2015

Ministerio del Medio Ambiente

Pablo Badenier Martínez

Ministro

Marcelo Mena Carrasco

Subsecretario

Alejandra Figueroa Fernández

Jefa División de Recursos Naturales y Biodiversidad

Karin Molt González

Jefa Departamento de Políticas y Planificación de la Biodiversidad

Autor: Patricio Pliscoff Varas, Universidad Católica de Chile

Colaboradores: Carolina Barra Caro, Ministerio del Medio Ambiente Jaime Rovira Soto, Ministerio del Medio Ambiente

Cítese como: Pliscoff, P. 2015. Aplicación de los criterios de la Unión Internacional para la Conservación de la Naturaleza (IUCN) para la evaluación de riesgo de los ecosistemas terrestres de Chile. Informe Técnico elaborado por Patricio Pliscoff para el Ministerio del Medio Ambiente. 63 p. Santiago, Chile.

INDICE DE CONTENIDOS

1.	INTRODUCCIÓN	3
2.	OBJETIVOS	5
	Objetivo general	. 5
	Objetivos específicos	. 5
3.	METODOLOGÍA	6
	Descripción de los criterios de evaluación del estado de conservación de los ecosistemas de acuerdo a metodología de la UICN	
	Aplicación de los criterios de evaluación de riesgo en Chile	. 9
4.	RESULTADOS.	12
	Criterio A. Reducción en la Distribución	12
	Criterio B. Distribución Geográfica restringida	13
	Criterio C. Degradación ambiental	15
	Evaluación Final del Estado de Conservación de los Ecosistemas Terrestres de Chile	17
5.	CONCLUSIONES	20
6.	REFERENCIAS	22
7.	ANEXOS	24

1. INTRODUCCIÓN

La Lista Roja de Ecosistemas desarrollada por la Unión internacional para la Conservación de la Naturaleza (UICN), busca establecer un estándar internacional para evaluar la condición de los ecosistemas a nivel local, nacional, regional y global. Esta iniciativa nace de la experiencia desarrollada en la lista roja de especies, que se ha transformado en una herramienta efectiva para la conservación y ha permitido el establecimiento de criterios frutos del consenso científico.

El modelo de la UICN se compone de cuatro grandes criterios de análisis de síntomas de riesgo de que el ecosistema pierda sus rasgos característicos. De estos cuatro criterios, dos se relacionan directamente con la distribución espacial del ecosistema. Estos son "reducción de la distribución" y "distribución restringida". Las otras dos categorías se relacionan con síntomas funcionales: el primero evalúa la degradación del ambiente abiótico y, el segundo, la alteración de procesos e interacciones biológicas. Además, cuenta con un quinto criterio relacionado a un modelo de estimaciones probabilísticas del riesgo de colapso de los ecosistemas (*Keith et al, 2013*).

Las categorías utilizadas para la clasificación, corresponden básicamente a las mismas categorías de la Lista Roja de Especies Amenazadas de UICN, ello fundamentado en mantener un carácter genérico de evaluación (UICN, 2014). Comprende, por un lado, las siguientes categorías cuantitativas de riesgo (*Rodriguez et al, 2011*): (i) En Peligro Crítico (CR); ii) En Peligro (EN) y iii) Vulnerable (VU) (UICN, 2001)), y, por otro lado, categorías cualitativas personalizadas para los ecosistemas: iv) ecosistemas que apenas no cumplen con los criterios cuantitativos para las tres categorías de amenaza, reciben la categoría de Casi Amenazado (NT); v) ecosistemas que, sin lugar a duda, no cumplen con ninguno de los criterios cuantitativos, los cuales reciben la categoría Preocupación Menor (LC); vi) ecosistemas para los cuales no se cuenta con datos suficientes para aplicar cualquier criterio, los que tendrán la categoría Datos Insuficientes (DD); y vii) ecosistemas que no han sido evaluados, por lo que reciben la categoría No Evaluado (NE). Por último, aparece la categoría de ecosistema Colapsado (CO), equivalente a la categoría de especie extinta (EX).

Para ejecutar una evaluación del estado de riesgo de los ecosistemas, el primer paso necesario es la identificación de la unidad de análisis que se definirá como símil de ecosistema en el área a analizar. En el caso de Chile, se ha utilizado la clasificación de pisos de vegetación (*Luebert & Pliscoff, 2006*) para realizar este primer ejercicio, ya que cuenta con una cobertura a escala nacional. Es decir, caracterizó todo Chile Continental en unidades ecosistémicas según un sistema de clasificación único, a una escala aproximada 1:100.000. Estas unidades están basadas en elementos físicos como el clima, el relieve y la composición botánica, lo que permite la identificación de distintas unidades con límites definidos.

La clasificación utilizada en este ejercicio, no implica que definiciones o clasificaciones a otras escalas no puedan ser utilizadas para el propósito de la evaluación de riesgo de ecosistemas propuesta por la UICN. Más aún, el equipo de la Lista Roja de Ecosistemas de UICN recomienda, metodológicamente, seguir una secuencia de evaluaciones: en primera instancia, evaluar la condición de los ecosistemas de todo el país analizando el comportamiento de las mismas variables y series de tiempo para todos los ecosistemas y, posteriormente, realizar una evaluación individual de los ecosistemas que resulten en la categoría de amenazados en la primera evaluación. Esa evaluación individual puede realizarse en base a variables y series de tiempo

específicos, siempre considerando los umbrales que define UICN para distinguir el estado de conservación del ecosistema. El resultado de esa evaluación individual, será la categoría definitiva del ecosistema individual en la Lista Roja de Ecosistemas, hasta que se disponga de una nueva evaluación futura con nuevos antecedentes. En este marco, el Ministerio del Medio Ambiente espera poder realizar evaluaciones de ecosistemas individuales en los próximos años, en base a aquellos ecosistemas que fueron identificados como amenazados en este ejercicio de análisis nacional y sobre los cuales se disponga de información suficiente para aplicar algunos de los criterios establecidos por la UICN.

Finalmente, en relación a la metodología utilizada para presentar una primera prueba a escala nacional del uso de los criterios y sub criterios de la UICN, esta se definió en base al entendimiento logrado de los lineamientos y fundamentos de la UICN en relación a esta clasificación, así como de la disposición de información para utilizar, por lo que podría darse en futuras aplicaciones el desarrollo de nuevas propuestas o modificaciones metodológicas para la aplicación de los criterios para evaluar el estado de conservación de los ecosistemas del país.

2. OBJETIVOS

Objetivo general

Presentar una primera prueba a escala nacional de la aplicación de los criterios de la metodología de evaluación del estado de conservación de los ecosistemas de la Unión Internacional para la Conservación para la Naturaleza (IUCN), en los ecosistemas terrestres de Chile, para evaluar su aplicabilidad en el país.

Objetivos específicos

- Contribuir con un ejercicio piloto de aplicación de la metodología UICN que permitirá al país evaluar, a escala nacional, el estado de conservación de los ecosistemas a partir de una mirada estandarizada internacionalmente
- Levantar información base preliminar del estado y las tendencias de los ecosistemas de Chile que permita orientar el diseño e implementación de medidas para la conservación de la biodiversidad y su restauración, así como la planificación del uso del territorio en el país.
- Contar con una base de información que contribuya a los esfuerzos para monitorear permanentemente el estado de conservación de los ecosistemas de nuestro país
- Identificar los ecosistemas terrestres en riesgo de colapso en nuestro país, para orientar su
 evaluación individual, con el fin de que ello permita evaluar los riesgos y costos asociados
 a la pérdida de estos ecosistemas así como evaluar los beneficios económicos potenciales
 asociados a un manejo ecosistémico bien planificado y ejecutado.

3. METODOLOGÍA

Descripción de los criterios de evaluación del estado de conservación de los ecosistemas de acuerdo a la metodología de la UICN

A continuación se presentan los criterios de evaluación de riesgos presentados en la última versión de la propuesta desarrollada por IUCN en *Keith et al. 2013*.

3.1.1 Criterio A. Reducción en la distribución.

Es un elemento asociado a los protocolos de evaluación del riesgo de los ecosistemas y es análogo al paradigma de disminución de poblaciones. Una reducción en la distribución gatilla distintos tipos de procesos, entre ellos disminuye su capacidad de carga, la diversidad de los nichos y las oportunidades para que exista una efectiva repartición de los recursos, lo cual aumenta los niveles de presión a la que están sometidas las diversas especies produciendo evasión de competidores, depredadores y patógenos. Otro efecto vinculado a la disminución de la distribución es la pérdida paulatina de la diversidad biológica y la extinción de diferentes especies constituyentes de dicho ecosistema, siguiendo la teoría de riqueza de especies y tamaño de parche. A medida que el área de un ecosistema se reduce, la pérdida de biota resultante depende de su patrón espacial en relación con las amenazas y las medidas de conservación.

Este análisis se planteó en tres periodos de tiempo que definen los sub criterios; el primero hace referencia a una disminución en el tiempo presente (A1), que se evalúa durante los últimos 50 años. El segundo implica la reducción futura, durante los próximos 50 años (A2a) o a lo largo de cualquier periodo de 50 años que incluya el presente y el futuro (A2b), y el último, es la disminución histórica (A3) que se calcula desde el año 1750.

3.1.2 Criterio B. Distribución restringida.

Este criterio busca identificar aquellos ecosistemas cuya distribución se encuentra tan restringida que están en riesgo de colapso por la concurrencia de eventos o procesos amenazantes. Este criterio se subdivide en tres sub criterios; Extensión de la Ocurrencia (B1), definida a partir de un polígono convexo análogo al cálculo que se realiza para especies, definiéndose a partir de la disminución continua observada o inferida (B1a); procesos de amenaza observados o inferidos (B1b), y, si el ecosistema existe en más de una localidad (B1c). El segundo sub criterio, abarca el concepto de Área de Ocupación (B2), el cual calcula el número de celdas ocupadas en una cuadrícula; finalmente, el tercero (B3) corresponde a una combinación, definida por el número de localidades y el riesgo del ecosistema a sufrir colapso.

3.1.3 Criterio C. Degradación ambiental.

La degradación del componente abiótico puede tener una inferencia importante en la reducción y desaparición de ciertos nichos disponibles para especies individuales. En este sentido la identificación de la degradación de ciertos componentes del hábitat puede permitir generar un diagnóstico del riesgo al que se encontrarían sometidos los otros componentes del sistema. No obstante, pueden existir ecosistemas con una capacidad de resiliencia mayor que otros, por lo cual

la estandarización de las variables es un elemento fundamental en la construcción de un modelo genérico y robusto. En términos prácticos, la evaluación de este criterio se ve subdividido según el grado de severidad de la degradación ambiental, el cual puede o no expresarse en términos de distribución. Por ejemplo, un ecosistema puede encontrarse severamente degradado en zonas muy acotadas de su distribución total; o puede, en cambio, presentar una degradación leve pero en toda su distribución. A esto se lo conoce como severidad relativa.

Los sub criterios definidos, se basan en los mismos tres periodos de tiempo del criterio A, pero en este caso la definición de la categoría estará definida por la combinación de distintos umbrales de extensión y severidad relativa. Es así, como el sub criterio C1, se refiere a la degradación ambiental durante los últimos 50 años, el C2 en los próximos 50 años y el C3 calculada desde el periodo histórico de 1750.

3.1.4 Criterio D. Alteración de procesos e interacciones bióticas.

Las funciones que se desprenden de los procesos de interacción biótica son de vital importancia a nivel de funcionamiento del sistema, como por ejemplo, los ciclos de carbono, nitrógeno o la generación de oxígeno, y se basan en estructuras jerárquicas altamente complejas, las cuales al ser modificadas pueden variar en la configuración de dominancia y co-dominancia, así como los diferentes niveles tróficos que componen el ecosistema. Por lo tanto, la disrupción de dichas interacciones también generaría una degradación ecosistémica, la cual puede al igual que el criterio anterior, expresarse en zonas acotadas de la distribución del ecosistema o en toda su extensión. Algunos ejemplos de esto son la fragmentación del hábitat, la introducción de especies exóticas y explotación antropogénica. Hablamos entonces de disrupción ecosistémica.

Los sub criterios definidos, al igual que en el criterio C, se basan en los tres periodos de tiempo del criterio A, definiendo cada categoría por la combinación de distintos umbrales de extensión y severidad relativa. Es así como el sub criterio D1, se refiere a la alteración de los procesos o interacciones bióticas durante los últimos 50 años, el sub criterio D2 en los próximos 50 años, y el sub criterio D3, calculado desde el periodo histórico a partir del año 1750.

3.1.5 Criterio E. Estimaciones cuantitativas del riesgo de colapso de los ecosistemas.

Se fundamenta en modelos predictivos matemáticos de la probabilidad de degradación de un ecosistema. Para ser evaluado requiere de una amplia disponibilidad de datos cuantificables en el criterio D. La ventaja de este criterio, es que permite explorar las interacciones y sinergias potenciales entre varios mecanismos de colapso. Por otro lado, su desventaja radica en la dificultad en construir la base de datos necesaria para su ejecución. El colapso ecosistémico es definido por la UICN (2014) como "es un umbral teórico, más allá del cual un ecosistema ya no puede sostener la mayor parte de su biota nativa característica o la abundancia de biota que tiene un papel clave en la organización del ecosistema (p.ej. dominantes tróficos o estructurales, grupos funcionales únicos, etc.). El colapso ha ocurrido cuando la composición, estructura y función de un ecosistema se han desplazado fuera de su intervalo natural de variabilidad espacial y temporal. Algunos de los múltiples elementos previos al colapso pueden permanecer en un ecosistema ya colapsado, pero sus abundancias relativas pueden diferir y pueden organizarse e interaccionar en nuevas maneras, con un nuevo set de normas operativas. El colapso de ecosistemas puede verse como una analogía a la extinción de especies, que precede o al menos coincide con la eliminación de toda la biota característica".

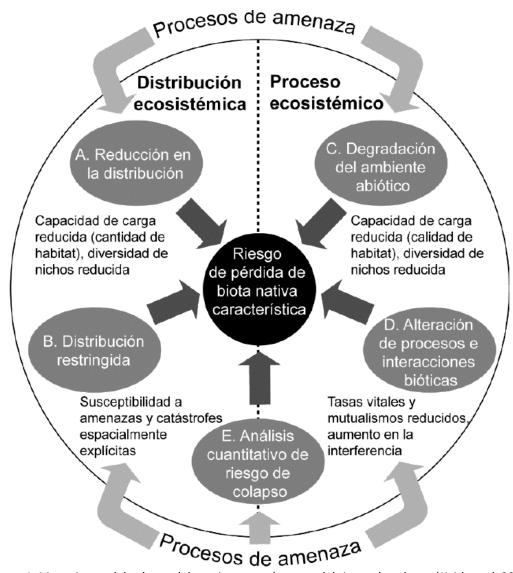


Figura 1. Mecanismos del colapso del ecosistema y síntomas del riesgo de colapso (Keith et al, 2013)

Aplicación de los criterios de evaluación de riesgo en Chile

Como se indicó anteriormente, la aplicación de los criterios en Chile, se realizó utilizando la clasificación de pisos de vegetación como unidad de análisis y desarrollando solo aquellos criterios en los que se contaba con información a escala nacional. En la figura 2, se indica el marco conceptual para la aplicación de los criterios y se indica cuales fueron calculados para Chile y no fueron calculados pero se podrían calcular de contar con la información necesaria para ello.



Figura 2. Marco conceptual para la aplicación de los criterios de evaluación de riesgos de ecosistemas en Chile (basado en *Keith et al. 2013*).

A continuación, se explica cómo se utilizó cada criterio, de acuerdo a la información disponible en nuestro país para la realización de este ejercicio.

3.1.6 Criterio A. Reducción en la Distribución

El criterio A se aplicó en dos de los tres sub criterios presentados: A2b (reducción en la distribución de los ecosistemas, considerando un periodo de 50 años que incluya el presente y el futuro), y A3 (disminución histórica calculada desde 1750). El sub criterio A1 no se evaluó debido a que no se cuenta con datos históricos recientes (50 años atrás) de cambio de uso de suelo a escala nacional.

En el caso del sub criterio A2b, se realizó una estimación basada en una proyección de la tasa de pérdida reciente calculada en los últimos 20 años (1992-2012). Se calculó la superficie remanente con vegetación natural, de cada piso de vegetación para el año 1992 y para el año 2012, combinando información de cobertura de uso de suelo obtenida del sensor MODIS para los usos

de suelo agrícola y urbano, junto a información del catastro de actividad forestal de INFOR. Finalmente, se incorporó la distribución de las actividades mineras obtenidas de una digitalización realizada para el proyecto GEF SNASP (Ministerio de Medio Ambiente). A partir de la diferencia de superficie remanente de los años 1992 y 2012, se calculó la tasa de perdida en los últimos 20 años, la cual fue extrapolada en forma lineal para los próximos 30 años, usando la tasa de perdida calculada para cada ecosistema en el periodo 1992-2012. Se aplicó la tasa de pérdida de esta forma porque no se cuenta con antecedentes que permitan estimar distintas tasas de pérdida en zonas geográficas particulares del país. Los trabajos que han estimado tasas de cambio de la cobertura de uso de suelo, se han realizado en la zona centro sur del país, donde se encuentran las zonas que presentan la mayor dinámica de cambio de uso de suelo (*Echeverría et al. 2006, Schulz et al. 2010, Nahuelhual et al. 2012, Zamorano-Elqueta et al. 2015*).

El sub criterio A3, por su parte, se calculó con la diferencia de superficie entre la distribución potencial del piso de vegetación (asumiendo que correspondería a una fecha aproximada al año 1750) y la superficie remanente actual de cada piso de vegetación (2014), esta última calculada con los mismo elementos que en el criterio A2a; es decir, coberturas agrícolas y urbanas obtenidas del sensor MODIS, cobertura de plantaciones forestales de la base de datos de INFOR y distribución de las actividades mineras obtenidas de una digitalización realizada para el proyecto GEF SNASP (Ministerio del Medio Ambiente).

3.1.7 Criterio B. Distribución Geográfica restringida

El criterio B se aplicó en uno de los sub criterios presentados: el criterio B2, referido al número de celdas 10 x 10 km ocupadas (Área de ocupación – AOO). El sub criterio B1, que se evalúa en función de la definición del polígono mínimo convexo (Extensión de la ocupación) que abarque toda la distribución del ecosistema, no fue incluido debido a que a escala nacional la distribución del conjunto de ecosistemas terrestres, presenta patrones de distribución muy dispares. La determinación del polígono mínimo convexo, sobreestimaría la distribución de unidades que a pesar de poseer una superficie restringida, se distribuyen a lo largo de un gradiente latitudinal, esto se da comúnmente en Chile, debido a su disposición geográfica. Finalmente, el criterio B3 que se evalúa en función de un número de localidades de presencia, tampoco fue incluido, ya que este está más relacionado a evaluaciones ecosistema por ecosistema y no para evaluaciones nacionales.

El sub criterio B2 fue aplicado utilizando la distribución actual de cada piso de vegetación, la cual fue procesada en formato raster (celdas) de 10x10 Km2, realizando así un conteo de celdas para calcular los umbrales de área definidos en este sub criterio de área de ocupación del ecosistema. Una vez realizado esto, y siguiendo los pasos estipulados para el criterio B2, para el cual es condición requerida la inclusión de la evaluación de alguno de los sub criterios condicionantes indicados en la Figura 2, se definió aplicar el sub criterio condicionante de disminución continua (a) por una medida de extensión espacial (i). En este caso, se revisó el comportamiento en el criterio de reducción espacial A2b.

3.1.8 Criterio C. Degradación ambiental

El criterio C fue aplicado en el sub criterio C2, referido a la estimación de la degradación ambiental durante los próximos 50 años. Tanto el criterio C1, como el sub criterio C3 no fueron evaluados, debido a la imposibilidad de contar con datos de variables abióticas a escala nacional tanto en términos históricos, como históricos recientes. Para aplicar el sub criterio C2, se utilizaron los resultados obtenidos en el estudio "Plan de Acción Para la Protección y Conservación de la Biodiversidad, en un Contexto de Adaptación al Cambio Climático" (Santibañez et al. 2013). En el estudio señalado, se calculó un índice de estrés integrado obtenido a partir de la estimación de un estrés hídrico y un estrés térmico. El concepto de estrés se refiere a una variación tanto positiva o negativa de los rangos de tolerancia bioclimática actuales respecto a un escenario futuro de cambio climático.

Para efectos de este estudio, se estimó la categoría de amenaza de cada piso de vegetación calculando la extensión y severidad para el estrés hídrico y el estrés térmico (estival e invernal) respectivamente. La proyección actual se realizó para un escenario de cambio climático al año 2050.

3.1.9 Criterio D. Alteración de procesos e interacciones bióticas

Se considera que no existe información suficiente para el cálculo del criterio D relacionado a la alteración de procesos e interacciones bióticas, a escala nacional. La información necesaria para evaluar este criterio estaría relacionada con indicadores que den cuenta de la disminución poblacional de niveles taxonómicos (especies) en forma cuantitativa. La evaluación del impacto de especies invasoras o la variación en la composición florística sobre una biota en particular, son ejemplos que se han utilizado para definir este criterio (*English & Keith, 2015*) y que se podrían adaptar para ecosistemas particulares de Chile con información suficiente.

3.1.10 Criterio E. Estimaciones cuantitativas del riesgo de colapso de los ecosistemas

Finalmente el criterio E, que se define con estimaciones cuantitativas del riesgo de colapso de los ecosistemas, no fue aplicado en este ejercicio, debido a que se consideró que no existe información suficiente para poder estimar que los ecosistemas analizados se encuentran en un estado de colapso. Esta situación no quiere decir que necesariamente este criterio no se pueda aplicar en Chile. Si existiese información suficiente de un ecosistema puntual, por ejemplo, de algún humedal o ecosistema dulceacuícola que pudiese demostrar en forma cuantitativa que las condiciones naturales históricas que se conocía de este ecosistema han cambiado en forma irreversible (*Crespin & Simonetti, 2015*), ello, podría ser considerado para ser analizado dentro de este criterio.

4. RESULTADOS

Criterio A. Reducción en la Distribución

El resultado de este análisis indicó la presencia de ocho ecosistemas En Peligro Crítico (CR), seis ecosistemas En Peligro (EN), un ecosistema Vulnerable (VU) y un ecosistema Casi Amenazado (NT). Para definir los ecosistemas con la categoría de Casi Amenazados, se consideró un umbral de 10% inferior al umbral que el criterio UICN fija para definir la condición de Vulnerable. Es decir, en el caso del criterio A2b, los ecosistemas que dieron valores entre 27% y 29,9% de pérdida de superficie proyectada al año 2042 se considerarán NT.

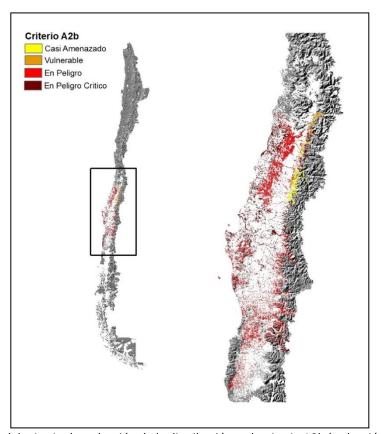


Figura 3. Aplicación del criterio de reducción de la distribución, sub criterio A2b (reducción futura, a lo largo de un periodo de 50 años, que incluya presente y futuro).

En el caso del sub criterio A3, los resultados indican que ocho pisos de vegetación presentan la categoría En Peligro (EN), ocho Vulnerables (VU) y uno Casi Amenazado (NT). El detalle de los pisos de vegetación amenazados que se obtuvo se encuentra en la Tabla 1 del Anexo.

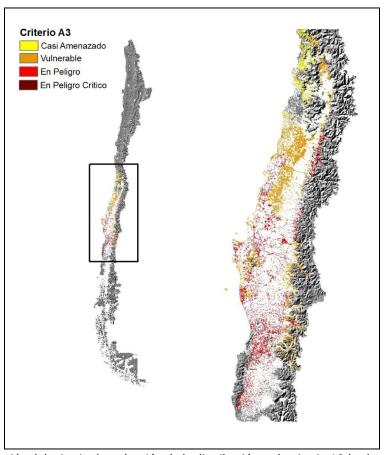


Figura 4. Aplicación del criterio de reducción de la distribución, sub criterio A3 (reducción histórica).

Por su parte, los sub criterios A1 (que considera los últimos 50 años hasta el presente) y A2a (que considera los próximos 50 años) no fueron calculados. En el caso del sub criterio A1, no fue posible realizar el cálculo de pérdida en los últimos 50 años, debido a la falta de información histórica reciente que permita obtener una sola cobertura de pérdida para el año 1965 aproximadamente (50 años). Una opción evaluada, fue la extrapolación de las tasas de pérdida reciente, pero no existe información para solventar una proyección de la tasa de pérdida en una forma ecosistema-especifica. El sub criterio A2a, en cambio, fue aplicado utilizando técnicas de modelamiento de cambio climático, pero la variabilidad de los resultados obtenidos, en función de las distintas técnicas aplicadas y de los distintos modelos de circulación global de cambio climático (GCM), no permitió establecer resultados fiables por el momento.

En el Anexo 1, se presenta una tabla con los pisos de vegetación y la categoría correspondiente según la evaluación de riesgo desarrollada.

Criterio B. Distribución Geográfica restringida

El resultado de la aplicación del sub criterio B2ai, permitió identificar solo un ecosistema amenazado en categoría Vulnerable (VU). De todas maneras, se definieron cinco ecosistemas en la categoría Casi Amenazado (NT).

Estos ecosistemas definidos como Casi Amenazados (NT), corresponden a ecosistemas que dejaron de considerarse amenazados al aplicar el sub criterio A2b (Tabla 1) por no registrar una disminución continua observada en una medida de extensión espacial del ecosistema. Sin embargo, se definieron como tal, debido al hecho de encontrarse en las categorías CR y EN al aplicar solo el criterio B2ai, lo cual fue considerado como condición de suficiencia para la designación de tal categoría.

Tabla 1. Aplicación de la condición ai para la definición del criterio B2

Piso de vegetación	А3	A2b	B2	B2	B2ai
Matorral desértico mediterráneo costero de					
Heliotropium eremogenum y Eulychnia					
morromorenoensis	0,0	0,00	3,2	EN	CT
Matorral espinoso mediterráneo interior de Puya					
coerulea y Colliguaja odorifera	0,1	0,00	50,1	VU	CT
Bosque resinoso templado costero de Araucaria					
araucana	6,7	4,11	29,8	VU	VU
Bosque resinoso templado andino de Austrocedrus					
chilensis y Nothofagus dombeyi	12,0	0,00	17,2	EN	CT
Matorral bajo mediterráneo costero de Chuquiraga					
oppositifolia y Mulinum spinosum	0,0	0,00	5,0	EN	CT
Matorral bajo templado andino de Adesmia longipes					
y Senecio bipontini	0,0	0,00	2,0	CR	CT

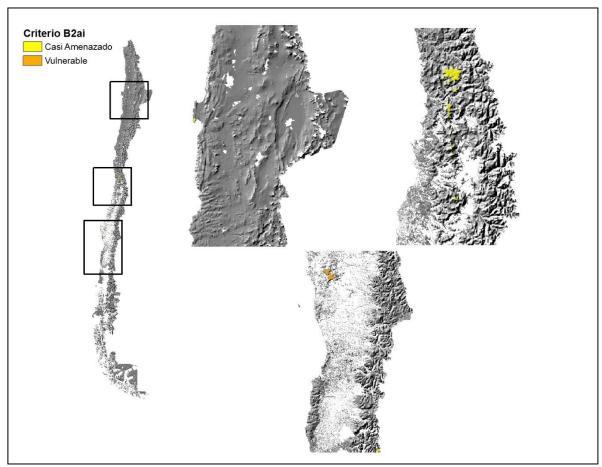


Figura 5. Aplicación del criterio de distribución geografía restringida, sub criterio B2 (Área de ocupación).

El sub criterio B1, referido a la Extensión de la Ocurrencia, no fue aplicado. Esto, dado porque este criterio se basa en la definición de un polígono convexo mínimo que abarque todos los sitios donde está presente el ecosistema. Esta metodología no es adecuada para representar cada unidad de nuestro estudio (piso de vegetación), ya que estos cuentan con límites de distribución definidos y la aplicación del polígono convexo mínimo generaría extrapolaciones que producirían un sesgo en las estimaciones del sub criterio.

El sub criterio B3, por su parte, no se pudo realizar por falta de información sistematizada para todos los ecosistemas (Pisos de Vegetación), que permitiera ese análisis.

Criterio C. Degradación ambiental

Como resultado de este análisis, se obtuvo, por un lado, que con estrés hídrico se presentaron 36 Ecosistemas Vulnerables (VU). Con respecto a los resultados obtenidos para el índice de estrés térmico, los resultados fueron diferenciados según su distribución geográfica: el estrés térmico estival se ubicó en la zona centro-sur, identificándose en esa zona veinticuatro ecosistemas Vulnerables (VU) y dos ecosistemas Casi Amenazados (NT). El índice térmico invernal, por su parte, presentó veinte ecosistemas Vulnerables (VU) en la zona andina norte.

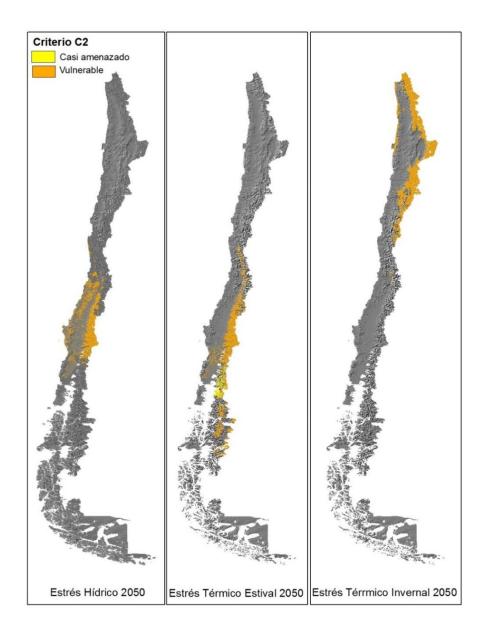


Figura 6. Aplicación del criterio de degradación ambiental, sub criterio C2 (Degradación ambiental durante los próximos 50 años).

El sub criterio C1 no pudo aplicarse por falta de información sistematizada a escala nacional para análisis de los últimos 50 años. Para ese análisis, requerido por el sub criterio C1, se podría aplicar el concepto de estrés "reciente" generado a partir de coberturas climáticas que representaran variables climáticas para 50 años atrás (utilizando registros meteorológicos de los años 30 a los años 60, por ejemplo).

El sub criterio C3, referido a los cambios "históricos" comparando la situación actual con la situación existente en 1750, no se pudo aplicar tampoco por falta de antecedentes. Sin embargo, se estima que podría realizarse si se dispusiera de información de símil climáticos históricos, como por ejemplo mediante datación dendrocronológica. Existen estudios disponibles para algunas especies que se podrían relacionar a algunos Pisos de vegetación.

Evaluación Final del Estado de Conservación de los Ecosistemas Terrestres de Chile

Dado que la clasificación de la UICN considera como resultado final de la evaluación del estado de conservación de los ecosistemas aquella categoría obtenida con el mayor grado de amenaza para cada ecosistema, a continuación (Fig. 7) se presenta la categoría final de amenaza para los ecosistemas estudiados (Vulnerable, En Peligro, En Peligro Critico), así como aquellos clasificados como Casi Amenazados (NT).

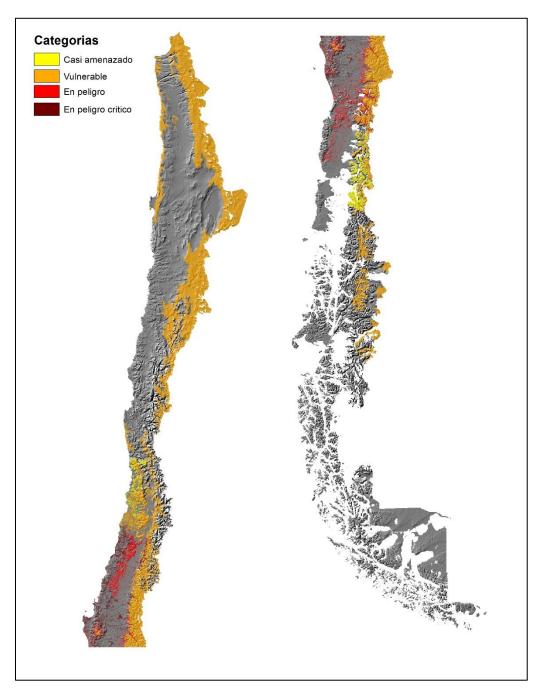


Figura 7. Resultados a nivel nacional de la aplicación de la metodología de la UICN para evaluar el estado de conservación de los ecosistemas terrestres de Chile.

Se obtuvo un total de 8 ecosistemas clasificados como En Peligro Critico (CR), 6 ecosistemas fueron clasificados En Peligro (EN), 49 ecosistemas en la categoría Vulnerable (VU), 5 ecosistemas en la categoría Casi amenazado (NT) y 59 ecosistemas clasificados en la categoría Preocupación Menor (LC); es decir, de un total de 127 pisos de vegetación, 63 de ellos se evidenciaron como amenazados (clasificados como CR, EN o VU) en base a los resultados obtenidos por este estudio (49.6% del total de los ecosistemas).

Respecto a la distribución a nivel regional, en la Figura 8 se presenta las categorías obtenidas para cada región del país.

Figura 8. Distribución a nivel regional de las categorías resultantes de la aplicación de la metodología de evaluación del estado de conservación de los ecosistemas de la UICN

Se observa que las categorías de amenaza (CR, EN o VU), se concentran principalmente en la zona central de Chile, con las categorías de mayor grado de amenaza (CR) entre las regiones VI a VIII, seguida por la categoría EN entre las regiones VI a XIV y una gran parte de las regiones del país con ecosistemas vulnerables, esto entre las regiones XV a XI. Esta mayor amenaza que afecta a los ecosistemas de la zona central de Chile, se manifiesta a través de la pérdida, degradación y fragmentación de estos ecosistemas, y se explica por impactos tanto antrópicos como naturales experimentados por estos ecosistemas, siendo el cambio de uso de los suelos el principal factor antrópico que ha ocasionado cambios en los ecosistemas terrestres naturales de nuestro país. La tala irregular de los bosques y las plantaciones con especies exóticas, han ocasionado pérdida significativa del bosque nativo para esta zona. Ello, junto con el despeje de bosques para el

establecimiento de pastizales y cultivos y el incremento de la urbanización, constituyen las mayores amenazas para estos cambios (*Ministerio del Medio Ambiente, 2014*).

5. CONCLUSIONES

La propuesta de evaluación de riesgo para la elaboración de una Lista Roja de Ecosistemas de la Unión Internacional para la Conservación de la Naturaleza (UICN) presenta un marco conceptual y metodológico de gran utilidad y valor para ser aplicado tanto a nivel nacional como regional y local en Chile. La existencia de propuestas de clasificación a escala nacional (*Gajardo, 1994; Luebert y Pliscoff, 2006*) y de una gran cantidad de información de la biota nativa disponible para algunas zonas del país (ej. Libros rojos de Arica y Parinacota, Antofagasta, Copiapó, Coquimbo y O´Higgins), permiten considerar que el uso de la metodología empleada puede ser de gran relevancia para la categorización de los niveles de amenaza de los ecosistemas nativos.

De acuerdo al ejercicio aquí presentado, los criterios relacionados a distribución geográfica (criterios A y B) son los que tienen mayor aplicabilidad, en el sentido que para su evaluación, se necesita un tipo de información que se encuentra disponible en el país por lo que es posible de recopilar, especialmente para escalas temporales recientes. Distinto es el caso de los criterios basados en aspectos de funcionalidad de los ecosistemas (criterios C y D), en los cuales los vacíos de información existentes de variables bióticas y abióticas para ser evaluadas, impiden la aplicación de estos criterios. Es necesario, por tanto, realizar esfuerzos de búsqueda y recopilación de estudios que permitan incorporar estos criterios, y realizar los análisis para ecosistemas particulares que ya hayan sido identificados en alguna categoría de amenaza por los criterios basados en distribución geográfica. Esto permitirá darle mayor validez y significancia a la categoría final que se defina para algún ecosistema en particular. De todas maneras, la existencia de nuevas fuentes de información a escala global, podría ser de gran utilidad para abordar alguno de los criterios pendientes a evaluar. Por ejemplo, nuevas bases de datos de cobertura y uso de suelo asociadas a variables físicas obtenidas de imágenes satelitales, podría permitir abordar en forma indirecta tanto la pérdida de funcionalidad de los ecosistemas por aspectos bióticos como abióticos.

Los resultados de este ejercicio, concuerdan con los análisis regionales y locales que se han efectuado a la fecha. En el caso del criterio A, la zona geográfica donde se concentran tanto los ecosistemas terrestres que han sufrido una mayor pérdida de superficie natural en términos históricos como históricos-recientes (Aguayo et al. 2009, Armesto et al. 2010), coincide con el área que ha presentado la mayor dinámica de la cobertura natural y antrópica, siendo esta la zona de Chile Central ubicada entre la V Región de Valparaíso y la X Región de Los Lagos (Schulz et al. 2010, Hernández et al. 2015). Así también, dentro de esta área, los ecosistemas más amenazados, especialmente aquellos identificados por el sub criterio A2b (pérdida reciente) son los que se relacionan con la dinámica asociada al sector forestal, en los que se ha transformado fuertemente el paisaje del sector costero entre la VI Región del Libertador General Bernardo O'Higgins y la IX Región de la Araucanía (Echeverría et al. 2006, Echeverría et al. 2008, Altamirano y Lara 2010, Altamirano et al. 2013, Miranda et al. 2015). En relación a los criterios de funcionalidad, el único criterio evaluado (criterio C), se abordó desde la perspectiva de los efectos del cambio climático sobre la biota nativa. Respecto a este análisis, los resultados obtenidos presentan concordancia con las evaluaciones globales y nacionales para Chile, identificando a la zona central del país como el área más afectada por la disminución de las precipitaciones a mediano plazo (Vicuña et al. 2011, Quintana y Aceituno 2012).

Es relevante señalar que este ejercicio representa una evaluación conservadora en términos de estimación de la pérdida de la superficie natural de los ecosistemas terrestres, dado que al utilizarse fuentes de datos a escalas espaciales amplias (1 kilómetro para los usos no forestales para la comparación entre los años 1992 y 2012), es posible que se esté perdiendo algunas dinámicas de pérdida de la cobertura natural relevante en ciertas zonas del país. Los resultados de este ejercicio, deben ser abordados como una primera aproximación a escala nacional que permitió evaluar en una misma vez el estado de los ecosistemas terrestres de Chile, pero no corresponde a un análisis exhaustivo de las distintas amenazas que está experimentando el territorio nacional. Asimismo, se espera que estos resultados se consideren como una guía u orientación para posteriores evaluaciones de ecosistemas particulares que ya han sido identificados dentro de una categoría de amenaza, tanto en este ejercicio, como en estudios anteriores.

6. REFERENCIAS

Aguayo, M., Pauchard, A., Azócar, G., & Parra, O. (2009). Cambio del uso del suelo en el centro sur de Chile a fines del siglo XX: Entendiendo la dinámica espacial y temporal del paisaje. *Revista Chilena de Historia Natural*, 82(3), 361–374.

Altamirano, A., & Lara, A. (2010). Deforestación en ecosistemas templados de la precordillera andina del centro-sur de Chile. *Bosque*, *31*(1), 53–64.

Altamirano, A., Aplin, P., Miranda, A., Cayuela, L., Algar, A. C., & Field, R. (2013). High rates of forest loss and turnover obscured by classical landscape measures. *Applied Geography*, 40, 199–211.

Armesto, J. J., Manuschevich, D., Mora, A., Smith-Ramírez, C., Rozzi, R., Abarzúa, A. M., & Marquet, P. A. (2010). From the Holocene to the Anthropocene: A historical framework for land cover change in southwestern South America in the past 15,000 years. *Land Use Policy*, *27*(2), 148–160.

Crespin S. J. & Simonetti J. A. (2015) Predicting ecosystem collapse: spatial factors that influence risks to tropical ecosystems. Austral Ecology. 40, 492–501.

Echeverria, C., Coomes, D., Salas, J., Rey-Benayas, J. M., Lara, A., & Newton, A. (2006). Rapid deforestation and fragmentation of Chilean Temperate Forests. Biological Conservation, 130(4), 481–494.

Echeverria, C., Coomes, D. A., Hall, M., & Newton, A. C. (2008). Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile. *Ecological Modelling*, (212), 439–449.

English V. & Keith D. A. (2015) Assessing risks to ecosystems within biodiversity hotspots: a case study from southwestern Australia. Austral Ecology. 40,411–22.

Hernández, A., Miranda, M., Arellano, E. C., Saura, S., & Ovalle, C. (2015). Landscape dynamics and their effect on the functional connectivity of a Mediterranean landscape in Chile. *Ecological Indicators*, 48, 198–206.

Hernández, A., Miranda, M., Arellano, E. C., Saura, S., & Ovalle, C. (2015). Landscape dynamics and their effect on the functional connectivity of a Mediterranean landscape in Chile. *Ecological Indicators*, 48, 198–206.

Keith D.A., Rodríguez J.P., Rodríguez-Clark K.M., Aapala K., Alonso A., Asmussen M., Bachman S., Bassett A., Barrow E.G., Benson J.S., Bishop M.J., Bonifacio R., Brooks T.M., Burgman M.A., Comer P., Comín F.A., Essl F., Faber-Langendoen D., Fairweather P.G., Holdaway R.J., Jennings M., Kingsford R.T., Lester R.E., Mac Nally R., Mccarthy M.A., Moat J., Nicholson E., Oliveira-Miranda

M.A., Pisanu P., Poulin B., Riecken U., Spalding M.D. & Zambrano-Martínez S. 2013. Scientific Foundations for an IUCN Red List of Ecosystems, PLOS ONE 8(5): e62111

Ministerio del Medio Ambiente, 2014. Quinto Informe Nacional de Biodiversidad de Chile ante el Convenio sobre la Diversidad Biológica (CBD). Ministerio del Medio Ambiente. Santiago, Chile, 140 pp.

Nahuelhual, L., Carmona, A., Lara, A., Echeverría, C., & González, M. E. (2012). Land-cover change to forest plantations: Proximate causes and implications for the landscape in south-central Chile. Landscape and Urban Planning, 107(1), 12–20.

Quintana, J. M., & Aceituno, P. (2012). Changes in the rainfall regime along the extratropical west coast of South America (Chile). *Atmosfera*, 25(1), 1–22.

Luebert, F., & Pliscoff, P. 2006. Sinopsis Climática y Vegetacional de Chile. Editorial Universitaria. Santiago, Chile. 316 p.

Santibañez, F., Santibañez, P., Caroca, C., González, P., Gajardo, N., Perry, P., Simonetti, J.; Pliscoff, P. 2013. Plan de acción para la protección y conservación de la biodiversidad, en un contexto de adaptación al cambio climático. MMA-Fundación Facultad de Ciencias Agronómicas Universidad de Chile; Santiago, 224 p.

Schulz, J. J., Cayuela, L., Echeverria, C., Salas, J., & Rey Benayas, J. M. (2010). Monitoring land cover change of the dryland forest landscape of Central Chile (1975–2008). Applied Geography, 30(3), 436–447.

Vicuña, S., Garreaud, R. D., & McPhee, J. (2010). Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. *Climatic Change*, 105(3-4), 469–488.

Zamorano-Elgueta, C., Rey Benayas, J. M., Cayuela, L., Hantson, S., & Armenteras, D. (2015). Native forest replacement by exotic plantations in southern Chile (1985–2011) and partial compensation by natural regeneration. Forest Ecology and Management, 345, 10–20.

7. ANEXOS

- Tabla 1. Aplicación de los criterios de evaluación de riesgo IUCN por piso de vegetación.
- Tabla 2. Valores definidos para el cálculo del sub criterio A2b
- Tabla 3. Valores definidos para el cálculo del sub criterio A3
- Tabla 4. Valores definidos para el cálculo del sub criterio B2i
- Tabla 5. Valores definidos para el cálculo del sub criterio C2 (Estrés Hídrico)
- Tabla 6. Valores definidos para el cálculo del sub criterio C2 (Estrés Térmico Estival)
- Tabla 7. Valores definidos para el cálculo del sub criterio C2 (Estrés Térmico Invernal)

Tabla 1. Aplicación de los criterios de evaluación de riesgo IUCN por piso de vegetación.

Table	a 1. Aplicación de los criterio							
		Criterio	Criterio	Criterio	Criterio	Criterio	Criterio	
ID	Piso de vegetación	A2b	А3	B2	C2 Estrés (Hídrico)	C2 Estrés (Térmico Estival)	C2 Estrés (Térmico Invernal)	Final
1	Desierto tropical costero					1.0		
	con vegetación escasa	LC	LC	LC	LC	LC	VU	VU
2	Desierto tropical interior con vegetación escasa	LC	LC	LC	LC	LC	LC	LC
3	Matorral desértico tropical interior de Atriplex atacamensis y Tessaria absinthioides	LC	LC	LC	LC	LC	LC	LC
4	Matorral desértico tropical interior Malesherbia auristipulata y Tarasa rahmeri	LC	LC	LC	LC	LC	VU	VU
5	Matorral desértico tropical costero de Nolana adansonii y N. lycioides	LC	LC	LC	LC	LC	VU	VU
6	Matorral desértico tropical costero de Ephedra breana y Eulychnia iquiquensis	LC	LC	LC	LC	LC	VU	VU
7	Matorral desértico mediterráneo costero Copiapoa boliviana y Heliotropium	LC	LC	LC	LC	LC	LC	LC
8	mediterráneo costero de Heliotropium eremogenum y Eulychnia morromorenoensis	LC	LC	NT	LC	LC	LC	NT
9	Matorral desértico mediterráneo costero de Gypothamnium pinifolium y Heliotropium pycnophyllum	LC	LC	LC	LC	LC	LC	LC
10	Matorral desértico mediterráneo costero de Euphorbia lactiflua y Eulychnia iquiquensis	LC	LC	LC	LC	LC	LC	LC
11	Matorral desértico mediterráneo costero de Euphorbia lactiflua y Eulychnia saint-pieana	LC	LC	LC	LC	LC	LC	LC
12	Matorral desértico mediterráneo interior de Oxyphyllum ulicinum y Gymnophyton foliosum	LC	LC	LC	LC	LC	LC	LC

13	Matorral desértico							
13	mediterráneo costero de							
	Heliotropium floridum y	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Atriplex clivicola	LC						
14	Matorral desértico							
	mediterráneo costero de							
	Oxalis gigantea y Eulychnia							
	breviflora	LC						
15	Matorral desértico							
	mediterráneo interior de							
	Skytanthus acutus y							
	Atriplex deserticola	LC						
16	Matorral desértico tropical							
	interior de Huidobria							
	chilensis y Nolana							
	leptophylla	LC						
17	Matorral desértico							
	mediterráneo costero de							
	Oxalis gigantea y							
	Heliotropium stenophyllum	LC						
18	Matorral desértico							
1 -0	mediterráneo interior de							
	Adesmia argentea y							
	Bulnesia chilensis	LC						
10		LC						
19	Matorral desértico							
	mediterráneo interior de							
	Heliotropium stenophyllum							
	y Flourensia thurifera	LC						
20	Matorral desértico							
	mediterráneo interior de							
	Flourensia thurifera y							
	Colliguaja odorifera	LC						
21	Matorral desértico							
	mediterráneo costero de							
	Bahia ambrosioides y Puya							
	chilensis	LC	LC	LC	VU	LC	LC	VU
22	Matorral bajo desértico							
	tropical interior de							
	Adesmia atacamensis y							
	Cistanthe salsoloides	LC						
23	Matorral bajo desértico							
	tropical andino de Atriplex							
	imbricata y Acantholippia							
	deserticola	LC						
24	Matorral bajo desértico							
	tropical interior de Nolana							
	leptophylla y Cistanthe							
	salsoloides	LC						
25	Matorral bajo desértico	-	-	-			-	
	tropical-mediterráneo							
	andino de Atriplex							
	imbricata	LC	LC	LC	LC	LC	VU	VU
<u></u>	IIIIVIICata	LC	LC	LC	LC	LC	V 0	VU

				ı	I	ı		
26	Matorral bajo desértico mediterráneo andino de							
	Senecio proteus y							
	Haplopappus baylahuen	LC	LC	LC	LC	LC	LC	LC
27	Matorral espinoso							
	mediterráneo interior de							
	Trevoa quinquinervia y							
	Colliguaja odorifera	LC	LC	LC	LC	LC	LC	LC
28	Matorral espinoso							
	mediterráneo interior de							
	Puya coerulea y Colliguaja odorifera	LC	LC	NT	LC	LC	LC	NT
29	Bosque espinoso tropical	LC	LC	INI	LC	LC	LC	INI
23	interior de Prosopis							
	tamarugo y Tessaria							
	absinthiodes	LC	LC	LC	LC	LC	VU	VU
30	Bosque espinoso tropical							
	interior de Geoffroea							
	decorticans y Prosopis alba	LC	LC	LC	LC	LC	LC	LC
31	Bosque espinoso tropical andino de Browningia							
	andino de Browningia candelaris y Corryocactus							
	brevistylus	LC	LC	LC	LC	LC	LC	LC
32	Bosque espinoso							
	mediterráneo interior de							
	Acacia caven y Prosopis							
	chilensis	LC	VU	LC	LC	LC	LC	VU
33	Bosque espinoso de							
	mediterráneo andino							
	Acacia caven y Baccharis paniculata	LC	VU	LC	VU	VU	VU	VU
34	Bosque espinoso	LC	٧٥	LC	٧٥	VO	٧٥	VO
	mediterráneo costero de							
	Acacia caven y Maytenus							
	boaria	LC	LC	LC	VU	LC	LC	VU
35	Bosque espinoso							
	mediterráneo interior de							
	Acacia caven y Lithrea	ENI	\/!!	10	1/11	1.0	10	ENI
36	caustica Matorral arborescente	EN	VU	LC	VU	LC	LC	EN
30	esclerofilo mediterráneo							
	costero de Peumus boldus							
	y Schinus latifolius	LC	LC	LC	LC	LC	LC	LC
37	Matorral arborescente							
	esclerofilo mediterráneo							
	interior Quillaja saponaria y							
20	Porlieria chilensis	LC	LC	LC	LC	LC	LC	LC
38	Bosque esclerofilo mediterráneo andino de							
	Kageneckia angustifolia y							
	Guindilia trinervis	LC	LC	LC	LC	VU	LC	VU
39	Bosque esclerofilo	LC	LC	LC	VU	LC	LC	VU
		LC	2	LC	V	1	LC	٧٥

	mediterráneo costero de Cryptocarya alba y Peumus boldus							
40	Bosque esclerofilo mediterráneo costero de Lithrea caustica y Cryptocarya alba	LC	NT	LC	LC	LC	LC	NT
41	Bosque esclerofilo mediterráneo andino de Quillaja saponaria y Lithrea caustica	LC	LC	LC	VU	LC	LC	VU
42	Bosque esclerofilo mediterráneo costero de Lithrea caustica y Azara integrifolia	CR	VU	LC	VU	LC	LC	CR
43	Bosque esclerofilo mediterráneo interior de Lithrea caustica y Peumus boldus	EN	VU	LC	VU	LC	LC	EN
44	Bosque esclerofilo mediterráneo andino de Lithrea caustica y Lomatia hirsuta	VU	LC	LC	VU	VU	LC	VU
45	Bosque esclerofilo psamófilo mediterráneo interior de Quillaja saponaria y Fabiana imbricata	CR	EN	LC	VU	LC	LC	CR
46	Bosque caducifolio mediterráneo costero de Nothofagus macrocarpa y Ribes punctatum	LC	LC	LC	VU	LC	LC	VU
47	Bosque caducifolio mediterráneo interior de Nothofagus obliqua y Cryptocarya alba	CR	EN	LC	VU	LC	LC	CR
48	Bosque caducifolio mediterráneo andino de Nothofagus obliqua y Austrocedrus chilensis	LC	LC	LC	VU	VU	LC	VU
49	Bosque caducifolio mediterráneo costero de Nothofagus glauca y Azara petiolaris	CR	EN	LC	VU	LC	LC	CR
50	Bosque caducifolio mediterráneo costero de Nothofagus glauca y Persea lingue	CR	EN	LC	VU	LC	LC	CR
51	Bosque caducifolio mediterráneo andino de Nothofagus glauca y N. obliqua	NT	LC	LC	VU	VU	LC	VU

	I			1	1	1	1	
52	Bosque caducifolio							
	mediterráneo-templado							
	costero de Nothofagus							
	obliqua y Gomortega keule	CR	EN	LC	VU	LC	LC	CR
53	Bosque caducifolio							
	templado de Nothofagus							
	obliqua y Persea lingue	CR	EN	LC	VU	LC	LC	CR
54	Bosque caducifolio							
	templado de Nothofagus							
	obliqua y Laurelia							
	sempervirens	EN	EN	LC	VU	VU	LC	EN
55	Bosque mixto templado							
	costero de Nothofagus							
	dombeyi y N. obliqua	CR	EN	LC	VU	LC	LC	CR
56	Bosque caducifolio							
	templado costero de							
	Nothofagus alpina y Persea							
	lingue	EN	VU	LC	VU	LC	LC	EN
57	Bosque caducifolio							
	mediterráneo-templado							
	andino de Nothofagus							
	alpina y N. obliqua	LC	LC	LC	VU	VU	LC	VU
58	Bosque caducifolio							
	templado andino de							
	Nothofagus alpina y							
	Dasyphyllum diacanthoides	EN	VU	LC	VU	VU	LC	EN
59	Bosque caducifolio							
	templado andino de							
	Nothofagus alpina y N.							
	dombeyi	LC	LC	LC	VU	VU	LC	VU
60	Bosque caducifolio				_			
	mediterráneo-templado							
	andino de Nothofagus							
	pumilio y N. obliqua	LC	LC	LC	VU	VU	LC	VU
61	Bosque caducifolio						- 20	
01	templado andino de							
	Nothofagus pumilio y							
	Araucaria araucana	LC	LC	LC	VU	VU	LC	VU
62	Bosque caducifolio				,,,	,,,		'
02	templado andino de							
	Nothofagus pumilio y							
	Drimys andina	LC	LC	LC	LC	VU	LC	VU
63	Bosque caducifolio	LC	LC	LC	LC	V U	LC	V 0
US	templado andino de							
	Nothofagus pumilio y							
	Berberis ilicifolia	LC	LC	LC	LC	LC	LC	LC
64	Bosque caducifolio	LC	LC	LC	LC	LC	LC	- 10
04	templado andino de							
	Nothofagus pumilio y Azara							
		LC	LC	LC	VU	VU	LC	VU
65	alpina Bosque caducifolio	LC	LC	LC	VU	٧٥	LC	٧٥
05	templado andino de	LC	LC	LC	LC	LC	LC	LC
	tempiado andino de	LC	LC	LC	LC	LC	LC	LC

	Nothofagus pumilio y Ribes							
	cucullatum							
66	Bosque caducifolio							
	templado andino de Nothofagus pumilio y							
	Nothofagus pumilio y Chiliotrichum diffusum	LC	LC	LC	LC	LC	LC	LC
67	Bosque caducifolio			_				_
	templado-antiboreal							
	andino de Nothofagus							
	pumilio y Maytenus disticha	LC	LC	LC	LC	LC	LC	LC
68	Matorral caducifolio	LC	LC	LC	LC	LC	LC	LC
	templado andino de							
	Nothofagus antarctica	LC	LC	LC	LC	LC	LC	LC
69	Matorral caducifolio							
	templado andino de Nothofagus antarctica y							
	Nothofagus antarctica y Empetrum rubrum	LC	LC	LC	LC	LC	LC	LC
70	Matorral arborescente							
	caducifolio templado de							
	Nothofagus antarctica y							
71	Berberis microphylla Matorral arborescente	LC	LC	LC	LC	LC	LC	LC
/1	caducifolio templado-							
	antiboreal andino de N.							
	antarctica y Chiliotrichum							
	diffusum	LC	LC	LC	LC	LC	LC	LC
72	Bosque laurifolio templado costero de Aextoxicon							
	costero de Aextoxicon punctatum y Laurelia							
	sempervirens	EN	VU	LC	VU	LC	LC	EN
73	Bosque laurifolio templado							
	costero de Weinmannia							
	trichosperma y Laureliopsis philippiana	LC	LC	LC	LC	LC	LC	LC
74	Bosque laurifolio templado	LC		LC		LC		LC
	interior de Nothofagus							
	dombeyi y Eucryphia							
75	cordifolia	LC	LC	LC	LC	LC	LC	LC
75	Bosque resinoso templado costero de Araucaria							
	araucana	LC	LC	VU	VU	LC	LC	VU
76	Bosque resinoso templado	-				-		
	andino de Araucaria							
	araucana y Nothofagus		1.0	1.0		1711	1.0	,,,
77	dombeyi Bosque resinoso templado	LC	LC	LC	VU	VU	LC	VU
''	andino de Araucaria							
	araucana y Festuca							
	scabriuscula	LC	LC	LC	VU	VU	LC	VU
78	Bosque resinoso templado							,,,
	andino de Austrocedrus	LC	LC	NT	LC	VU	LC	VU

	chilensis y Nothofagus dombeyi							
79	Bosque resinoso templado							
	costero de Fitzroya cupressoides	LC	LC	LC	LC	LC	LC	LC
80	Bosque resinoso templado							
	andino de Fitzroya					NIT	1.0	NT
81	cupressoides Bosque resinoso templado	LC	LC	LC	LC	NT	LC	NT
01	costero de Pilgerodendron							
	uvifera y Tepualia stipularis	LC	LC	LC	LC	LC	LC	LC
82	Bosque resinoso templado							
	costero de Pilgerodendron uvifera y Astelia pumila	LC	LC	LC	LC	LC	LC	LC
83	Bosque siempreverde							
	templado andino de							
	Nothofagus dombeyi y Gaultheria phillyreifolia	LC	LC	LC	VU	VU	LC	VU
84	Bosque siempreverde	LC	LC	LC	VO	٧٥	LC	VO
	templado andino de							
	Nothofagus dombeyi y							
85	Saxegothaea conspicua Bosque siempreverde	LC	LC	LC	LC	NT	LC	NT
85	templado interior de							
	Nothofagus nitida y							
0.0	Podocarpus nubigena	LC	LC	LC	LC	LC	LC	LC
86	Bosque siempreverde templado interior de							
	Nothofagus betuloides y							
	Desfontainia spinosa	LC	LC	LC	LC	LC	LC	LC
87	Bosque siempreverde templado andino de							
	Nothofagus betuloides y							
	Laureliopsis philippiana	LC	LC	LC	LC	VU	LC	VU
88	Bosque siempreverde							
	templado andino de Nothofagus betuloides y							
	Chusquea macrostachya	LC	LC	LC	LC	VU	LC	VU
89	Bosque siempreverde							
	mixto templado andino de Nothofagus betuloides y							
	Berberis serrato-dentata	LC	LC	LC	LC	LC	LC	LC
90	Bosque mixto templado-	-	-	-		-	-	-
	antiboreal andino de							
	Nothofagus betuloides y Nothofagus pumilio	LC	LC	LC	LC	LC	LC	LC
91	Bosque siempreverde	LC						
	templado costero de							
	Nothofagus betuloides y Embothrium coccineum	1.0	1.0	10	10	LC	LC	10
92	Bosque siempreverde	LC	LC	LC	LC	LC	LC	LC
	templado costero de	LC	LC	LC	LC	LC	LC	LC

	Nothofagus betuloides y Drimys winteri							
93	Matorral siempreverde templado costero de Pilgerodendron uvifera y							
	Nothofagus nitida	LC	LC	LC	LC	LC	LC	LC
94	Turbera templada costera de Donatia fascicularis y Oreobolus obtusangulus	LC	LC	LC	LC	LC	LC	LC
95	Turbera antiboreal costera de Astelia pumila y Donatia fascicularis	LC	LC	LC	LC	LC	LC	LC
96	Turbera antiboreal costera de Bolax bovei y Phyllachne uliginosa	LC	LC	LC	LC	LC	LC	LC
97	Turbera templada- antiboreal interior de Sphagnum magellanicum y Schoenus antarcticus	LC	LC	LC	LC	LC	LC	LC
98	Matorral bajo tropical andino de Fabiana ramulosa y Diplostephium meyenii	LC	LC	LC	LC	LC	VU	VU
99	Matorral bajo tropical andino de Parastrephia	LC	LC	LC	LC	LC	VO	VO
	lucida y Azorella compacta	LC	LC	LC	LC	LC	VU	VU
100	Matorral bajo tropical andino de Parastrephia lucida y Festuca orthophylla	LC.	LC	LC	LC	LC	VU	VU
101	Matorral bajo tropical andino de Parastrephia lepidophylla y P. qudrangularis	LC	LC	LC	LC	LC	VU	VU
102	Matorral bajo tropical andino de Azorella compacta y Pycnophyllum molle	LC	LC	LC	LC	LC	VU	VU
103	Matorral bajo tropical andino de Fabiana denudata y Chuquiraga atacamensis	LC	LC	LC	LC	LC	VU	VU
104	Matorral bajo tropical andino de Fabiana squamata y Festuca							
	chrysophylla	LC	LC	LC	LC	LC	VU	VU
105	Matorral bajo tropical andino de Fabiana bryoides y Parastrephia							
45-	quadrangularis	LC	LC	LC	LC	LC	VU	VU
106	Matorral bajo tropical andino de Mulinum	LC	LC	LC	LC	LC	VU	VU

	crassifolium y Urbania							
407	pappigera							
107	Matorral bajo tropical							
	andino de Artemisia copa y Stipa frigida	LC	LC	LC	LC	LC	VU	VU
108	Matorral bajo tropical	LC	LC	LC	LC	LC	VU	VU
108	andino de Adesmia frigida							
	y Stipa frigida	LC	LC	LC	LC	LC	VU	VU
109	Matorral bajo tropical-							
	mediterráneo andino de							
	Adesmia hystrix y Ephedra							
	breana	LC	LC	LC	LC	LC	LC	LC
110	Matorral bajo tropical-							
	mediterráneo andino de							
	Adesmia subterranea y							
	Adesmia echinus	LC	LC	LC	LC	LC	VU	VU
111	Matorral bajo							
	mediterráneo costero de							
	Chuquiraga oppositifolia y Mulinum spinosum	LC	LC	NT	VU	LC	LC	VU
112	Matorral bajo	LC	LC	INI	VO	LC	LC	VO
112	mediterráneo andino de							
	Chuquiraga oppositifolia y							
	Nardophyllum lanatum	LC	LC	LC	LC	LC	LC	LC
113	Matorral bajo							
	mediterráneo andino de							
	Laretia acaulis y Berberis							
	empetrifolia	LC	LC	LC	LC	LC	LC	LC
114	Matorral bajo							
	mediterráneo andino de							
	Chuquiraga oppositifolia y Discaria articulata	1.0	LC	1.0	VU	VU	LC	VU
115	Matorral bajo templado	LC	LC	LC	VO	VU	LC	VU
113	andino de Discaria chacaye							
	y Berberis empetrifolia	LC	LC	LC	VU	VU	LC	VU
116	Matorral bajo emplado							
	andino de Adesmia							
	longipes y Senecio							
	bipontini	LC	LC	NT	LC	VU	LC	VU
117	Matorral bajo templado-							
	antiboreal andino de Bolax							
	gummifera y Azorella							
110	selago	LC	LC	LC	LC	LC	LC	LC
118	Herbazal tropical andino de Chaetanthera sphaeroidalis	LC	LC	LC	LC	LC	VU	VU
119	Herbazal mediterráneo de	LC	LC	LC	LC	LC	٧٥	٧٥
113	Nastanthus spathulatus y							
	Menonvillea spathulata	LC	LC	LC	LC	LC	LC	LC
120	Herbazal mediterráneo	==				==		
	andino de O. adenophylla y							
	Pozoa coriacea	LC	LC	LC	VU	VU	LC	VU
121	Herbazal templado andino	LC	LC	LC	LC	LC	LC	LC

	de Nassauvia dentata y Senecio portalesianus							
122	Herbazal antiboreal andino							
	de Nassauvia pygmaea y N. lagascae	LC						
123	Estepa mediterránea- templada de Festuca pallescens y Mulinum							
	spinosum	LC	LC	LC	LC	VU	LC	VU
124	Estepa mediterránea- templada oriental de							
	Festuca gracillima	LC						
125	Estepa templada oriental de Festuca gracillima y Empetrum rubrum	LC						
126	Estepa templada oriental de Festuca gracillima y		LC	16	16	LC	LC	1.6
427	Chiliotrichum diffusum	LC						
127	Estepa templada oriental de Festuca gracillima y							
	Mulinum spinosum	LC						

Tabla 2. Valores definidos para el cálculo del sub criterio A2b

ID	Porcentaje Pérdida	Tasa pérdida	Porcentaje Pérdida	Evaluació
Piso de vegetación	1992-2012	20 años	proyectada 50 años	A2b
1	0,00	0,0	0,00	LC
2	0,00	0,0	0,00	LC
3	0,00	0,0	0,00	LC
4	0,00	0,0	0,00	LC
5	0,00	0,0	0,00	LC
6	0,00	0,0	0,00	LC
7	0,00	0,0	0,00	LC
8	0,00	0,0	0,00	LC
9	0,00	0,0	0,00	LC
10	0,00	0,0	0,00	LC
11	0,00	0,0	0,00	LC
12	0,00	0,0	0,00	LC
13	0,00	0,0	0,00	LC
14	0,00	0,0	0,00	LC
15	0,00	0,0	0,00	LC
16	0,00	0,0	0,00	LC
17	0,00	0,0	0,00	LC
18	0,00	0,0	0,00	LC
19	0,00	0,0	0,00	LC
20	0,00	0,0	0,00	LC
21	0,00	0,0	0,00	LC
22	0,00	0,0	0,00	LC
23	0,00	0,0	0,00	LC
24	0,00	0,0	0,00	LC
25	0,00	0,0	0,00	LC
26	0,00	0,0	0,00	LC
27	0,02	0,0	0,06	LC
28	0,00	0,0	0,00	LC
29	0,00	0,0	0,00	LC
30	0,00	0,0	0,00	LC
31	0,00	0,0	0,00	LC
32	0,86	0,0	2,14	LC
33	3,25	0,2	8,12	LC
34	10,75	0,5	26,87	LC
35	23,43	1,2	58,58	EN
36	2,79	0,1	6,97	LC

37	0,00	0,0	0,00	LC
38	0,00	0,0	0,01	LC
39	1,84	0,1	4,59	LC
40	5,39	0,3	13,46	LC
41	0,47	0,0	1,18	LC
42	35,08	1,8	87,70	CR
43	25,66	1,3	64,14	EN
44	13,71	0,7	34,28	VU
45	54,73	2,7	100,00	CR
46	0,00	0,0	0,00	LC
47	48,49	2,4	100,00	CR
48	0,73	0,0	1,83	LC
49	44,30	2,2	100,00	CR
50	46,58	2,3	100,00	CR
51	11,79	0,6	29,48	NT
52	55,11	2,8	100,00	CR
53	52,30	2,6	100,00	CR
54	26,72	1,3	66,80	EN
55	49,79	2,5	100,00	CR
56	24,68	1,2	61,70	EN
57	0,33	0,0	0,82	LC
58	20,37	1,0	50,92	EN
59	1,02	0,1	2,55	LC
60	0,39	0,0	0,96	LC
61	0,63	0,0	1,59	LC
62	0,00	0,0	0,00	LC
63	0,00	0,0	0,00	LC
64	0,04	0,0	0,10	LC
65	0,00	0,0	0,00	LC
66	0,00	0,0	0,00	LC
67	0,00	0,0	0,00	LC
68	0,00	0,0	0,00	LC
69	0,00	0,0	0,00	LC
70	0,00	0,0	0,00	LC
71	0,00	0,0	0,00	LC
72	26,84	1,3	67,09	EN
73	1,75	0,1	4,37	LC
74	9,37	0,5	23,42	LC
75	1,64	0,1	4,11	LC

76	0,01	0,0	0,02	LC
77	1,80	0,1	4,49	LC
78	0,00	0,0	0,00	LC
79	0,00	0,0	0,00	LC
80	0,00	0,0	0,00	LC
81	0,01	0,0	0,02	LC
82	0,00	0,0	0,00	LC
83	0,00	0,0	0,00	LC
84	0,00	0,0	0,00	LC
85	0,58	0,0	1,46	LC
86	0,00	0,0	0,00	LC
87	0,00	0,0	0,00	LC
88	0,00	0,0	0,00	LC
89	0,00	0,0	0,00	LC
90	0,00	0,0	0,00	LC
91	0,00	0,0	0,00	LC
92	0,00	0,0	0,00	LC
93	0,00	0,0	0,00	LC
94	0,00	0,0	0,00	LC
95	0,00	0,0	0,00	LC
96	0,00	0,0	0,00	LC
97	0,00	0,0	0,00	LC
98	0,00	0,0	0,00	LC
99	0,00	0,0	0,00	LC
100	0,00	0,0	0,00	LC
101	0,00	0,0	0,00	LC
102	0,00	0,0	0,00	LC
103	0,00	0,0	0,00	LC
104	0,00	0,0	0,00	LC
105	0,00	0,0	0,00	LC
106	0,00	0,0	0,00	LC
107	0,00	0,0	0,00	LC
108	0,00	0,0	0,00	LC
109	0,00	0,0	0,00	LC
110	0,00	0,0	0,00	LC
111	0,00	0,0	0,00	LC
112	0,00	0,0	0,00	LC
113	0,00	0,0	0,00	LC
114	0,00	0,0	0,00	LC

115	0,00	0,0	0,00	LC
116	0,00	0,0	0,00	LC
117	0,00	0,0	0,00	LC
118	0,00	0,0	0,00	LC
119	0,00	0,0	0,00	LC
120	0,00	0,0	0,00	LC
121	0,00	0,0	0,00	LC
122	0,00	0,0	0,00	LC
123	0,00	0,0	0,00	LC
124	0,00	0,0	0,00	LC
125	0,00	0,0	0,00	LC
126	0,00	0,0	0,00	LC
127	0,00	0,0	0,00	LC

Tabla 3. Valores definidos para el cálculo del sub criterio A3

ID	Superficie	Superficie	Perdida	Remanente	Perdida	Evaluación
Piso de vegetación	potencial (hect.)	remanente (hect.)	histórica (hect.)	histórico (%)	histórica (%)	Criterio A3
1	256118	253186	2932	98,9	1,1	LC
2	5523487	5402529	120958	97,8	2,2	LC
3	895011	863193	31818	96,4	3,6	LC
4	54893	54484	409	99,3	0,7	LC
5	85027	82638	2388	97,2	2,8	LC
6	341272	338069	3203	99,1	0,9	LC
7	124588	120565	4022	96,8	3,2	LC
8	3342	3342	0	100,0	0,0	LC
9	79341	77624	1717	97,8	2,2	LC
10	72474	72378	96	99,9	0,1	LC
11	259304	259047	257	99,9	0,1	LC
12	192137	191479	658	99,7	0,3	LC
13	165032	162850	2182	98,7	1,3	LC
14	74707	68083	6624	91,1	8,9	LC
15	1828415	1799537	28878	98,4	1,6	LC
16	128162	125671	2491	98,1	1,9	LC
17	294350	246984	47366	83,9	16,1	LC
18	1261110	1235341	25769	98,0	2,0	LC
19	462603	399189	63413	86,3	13,7	LC
20	708956	676889	32067	95,5	4,5	LC
21	108955	94537	14418	86,8	13,2	LC
22	2444908	2396298	48610	98,0	2,0	LC
23	1499260	1482139	17121	98,9	1,1	LC
24	1222065	1216933	5132	99,6	0,4	LC
25	1018140	1015436	2704	99,7	0,3	LC
26	363564	360102	3461	99,0	1,0	LC
27	200457	153244	47213	76,4	23,6	LC
28	51376	51351	24	100,0	0,0	LC
29	65783	40181	25602	61,1	38,9	LC
30	185377	168508	16869	90,9	9,1	LC
31	122114	121168	946	99,2	0,8	LC
32	340880	115702	225179	33,9	66,1	VU
33	103135	47853	55282	46,4	53,6	VU
34	340564	190155	150410	55,8	44,2	LC
35	943824	302422	641402	32,0	68,0	VU
36	194261	145323	48938	74,8	25,2	LC
37	535084	515643	19441	96,4	3,6	LC
38	437069	432579	4491	99,0	1,0	LC

39	485589	435771	49818	89,7	10,3	LC
40	516342	277061	239280	53,7	46,3	NT
41	387351	227928	159423	58,8	41,2	LC
42	584977	213537	371440	36,5	63,5	VU
43	802464	291462	511002	36,3	63,7	VU
44	173710	106315	67395	61,2	38,8	LC
45	463575	71751	391824	15,5	84,5	EN
46	87249	87195	54	99,9	0,1	LC
47	943393	198375	745018	21,0	79,0	EN
48	485574	473803	11771	97,6	2,4	LC
49	104308	25642	78666	24,6	75,4	EN
50	251188	61229	189959	24,4	75,6	EN
51	132537	88898	43639	67,1	32,9	LC
52	262137	53970	208167	20,6	79,4	EN
53	782965	125593	657372	16,0	84,0	EN
54	1939442	483900	1455541	25,0	75,0	EN
55	421470	115380	306090	27,4	72,6	EN
56	175446	83546	91900	47,6	52,4	VU
57	100776	97713	3063	97,0	3,0	LC
58	615230	306408	308822	49,8	50,2	VU
59	272507	259849	12658	95,4	4,6	LC
60	112263	111405	858	99,2	0,8	LC
61	350075	326915	23161	93,4	6,6	LC
62	458547	457634	913	99,8	0,2	LC
63	1530426	1433613	96813	93,7	6,3	LC
64	467183	465301	1882	99,6	0,4	LC
65	871966	871803	163	100,0	0,0	LC
66	192910	192881	29	100,0	0,0	LC
67	696942	696720	222	100,0	0,0	LC
68	114402	114378	24	100,0	0,0	LC
69	501000	500983	17	100,0	0,0	LC
70	368724	354774	13950	96,2	3,8	LC
71	767144	766605	539	99,9	0,1	LC
72	121644	41034	80610	33,7	66,3	VU
73	255935	246405	9529	96,3	3,7	LC
74	1007474	586970	420504	58,3	41,7	LC
75	29346	26970	2376	91,9	8,1	LC
76	297410	295326	2084	99,3	0,7	LC
77	141268	133011	8257	94,2	5,8	LC
78	17334	15444	1890	89,1	10,9	LC
79	84758	84747	11	100,0	0,0	LC

80	308357	307636	721	99,8	0,2	LC
81	282272	281384	888	99,7	0,3	LC
82	824830	824793	36	100,0	0,0	LC
83	85631	85099	532	99,4	0,6	LC
84	300380	298711	1669	99,4	0,6	LC
85	1640345	1358918	281427	82,8	17,2	LC
86	1286245	1281177	5068	99,6	0,4	LC
87	74957	73936	1021	98,6	1,4	LC
88	588669	572705	15964	97,3	2,7	LC
89	346707	337745	8962	97,4	2,6	LC
90	343143	343138	5	100,0	0,0	LC
91	411464	411406	58	100,0	0,0	LC
92	593158	593158	0	100,0	0,0	LC
93	335228	334552	676	99,8	0,2	LC
94	3841212	3841118	94	100,0	0,0	LC
95	1290033	1290033	0	100,0	0,0	LC
96	443126	443126	0	100,0	0,0	LC
97	909851	909849	3	100,0	0,0	LC
98	680307	676797	3510	99,5	0,5	LC
99	318723	318387	337	99,9	0,1	LC
100	165469	159540	5929	96,4	3,6	LC
101	686668	686577	91	100,0	0,0	LC
102	184405	183960	446	99,8	0,2	LC
103	399409	398987	422	99,9	0,1	LC
104	395760	393501	2260	99,4	0,6	LC
105	827441	827275	166	100,0	0,0	LC
106	1230646	1224073	6573	99,5	0,5	LC
107	396741	396741	0	100,0	0,0	LC
108	370763	370763	0	100,0	0,0	LC
109	1489062	1486238	2824	99,8	0,2	LC
110	1322912	1317562	5350	99,6	0,4	LC
111	5663	5663	0	100,0	0,0	LC
112	405573	403047	2526	99,4	0,6	LC
113	905269	903142	2127	99,8	0,2	LC
114	187380	186898	482	99,7	0,3	LC
115	60672	60522	151	99,8	0,2	LC
116	1838	1838	0	100,0	0,0	LC
117	1101388	1101388	0	100,0	0,0	LC
118	398226	396834	1392	99,7	0,3	LC
119	502137	499715	2422	99,5	0,5	LC
120	121976	121976	0	100,0	0,0	LC

121	381850	381738	112	100,0	0,0	LC
122	132876	132876	0	100,0	0,0	LC
123	464280	442788	21492	95,4	4,6	LC
124	607917	607917	0	100,0	0,0	LC
125	769304	768982	323	100,0	0,0	LC
126	594857	590409	4449	99,3	0,7	LC
127	64461	64445	16	100,0	0,0	LC

Tabla 4. Valores definidos para el cálculo del sub criterio B2ai

ID	Piso de vegetación	Superficie	B2	B2ai
1	Desierto tropical costero con	255	LC	LC
	vegetación escasa			
2	Desierto tropical interior con	5523	LC	LC
	vegetación escasa			
3	Matorral desértico tropical interior	895	LC	LC
	de Atriplex atacamensis y Tessaria			
	absinthioides			
4	Matorral desértico tropical interior	55	LC	LC
	Malesherbia auristipulata y Tarasa			
	rahmeri			
5	Matorral desértico tropical costero	84	LC	LC
	de Nolana adansonii y N. lycioides			
6	Matorral desértico tropical costero	341	LC	LC
	de Ephedra breana y Eulychnia			
	iquiquensis			
7	Matorral desértico mediterráneo	125	LC	LC
	costero Copiapoa boliviana y			
	Heliotropium pycnophyllum			
8	Matorral desértico mediterráneo	3	EN	NT
	costero de Heliotropium			
	eremogenum y Eulychnia			
	morromorenoensis			
9	Matorral desértico mediterráneo	80	LC	LC
	costero de Gypothamnium pinifolium			
	y Heliotropium pycnophyllum			
10	Matorral desértico mediterráneo	71	LC	LC
	costero de Euphorbia lactiflua y			
	Eulychnia iquiquensis			
11	Matorral desértico mediterráneo	259	LC	LC
	costero de Euphorbia lactiflua y			
	Eulychnia saint-pieana			
12	Matorral desértico mediterráneo	193	LC	LC
	interior de Oxyphyllum ulicinum y			
	Gymnophyton foliosum			
13	Matorral desértico mediterráneo	165	LC	LC
	costero de Heliotropium floridum y			
	Atriplex clivicola			
14	Matorral desértico mediterráneo	75	LC	LC
	costero de Oxalis gigantea y			
	Eulychnia breviflora			
15	Matorral desértico mediterráneo	1828	LC	LC
	interior de Skytanthus acutus y			
	Atriplex deserticola			
16	Matorral desértico tropical interior	128	LC	LC
	de Huidobria chilensis y Nolana			
	leptophylla			
17	Matorral desértico mediterráneo	295	LC	LC
	costero de Oxalis gigantea y			
	Heliotropium stenophyllum			

18	Matorral desértico mediterráneo	1263	LC	LC
	interior de Adesmia argentea y			
	Bulnesia chilensis			
19	Matorral desértico mediterráneo	461	LC	LC
	interior de Heliotropium			
	stenophyllum y Flourensia thurifera			
20	Matorral desértico mediterráneo	709	LC	LC
	interior de Flourensia thurifera y			
	Colliguaja odorifera			
21	Matorral desértico mediterráneo	109	LC	LC
	costero de Bahia ambrosioides y			
	Puya chilensis			
22	Matorral bajo desértico tropical	2446	LC	LC
	interior de Adesmia atacamensis y			
	Cistanthe salsoloides			
23	Matorral bajo desértico tropical	1501	LC	LC
	andino de Atriplex imbricata y			
	Acantholippia deserticola			
24	Matorral bajo desértico tropical	1222	LC	LC
	interior de Nolana leptophylla y			
	Cistanthe salsoloides			
25	Matorral bajo desértico tropical-	1019	LC	LC
	mediterráneo andino de Atriplex			
	imbricata			
26	Matorral bajo desértico	362	LC	LC
	mediterráneo andino de Senecio			
	proteus y Haplopappus baylahuen			
27	Matorral espinoso mediterráneo	200	LC	LC
	interior de Trevoa quinquinervia y			
	Colliguaja odorifera			
28	Matorral espinoso mediterráneo	50	VU	NT
	interior de Puya coerulea y Colliguaja			
	odorifera			
29	Bosque espinoso tropical interior de	66	LC	LC
	Prosopis tamarugo y Tessaria			
	absinthiodes			
30	Bosque espinoso tropical interior de	185	LC	LC
	Geoffroea decorticans y Prosopis			
	alba			
31	Bosque espinoso tropical andino de	121	LC	LC
	Browningia candelaris y Corryocactus			
	brevistylus			
32	Bosque espinoso mediterráneo	339	LC	LC
	interior de Acacia caven y Prosopis			
	chilensis			
33	Bosque espinoso de mediterráneo	104	LC	LC
	1			
	andino Acacia caven y Baccharis			
	andino Acacia caven y Baccharis paniculata			
34		341	LC	LC
34	paniculata	341	LC	LC
34	paniculata Bosque espinoso mediterráneo	341	LC	LC

	I			
	interior de Acacia caven y Lithrea caustica			
36	Matorral arborescente esclerofilo	195	LC	LC
	mediterráneo costero de Peumus			
	boldus y Schinus latifolius			
37	Matorral arborescente esclerofilo	538	LC	LC
	mediterráneo interior Quillaja			
	saponaria y Porlieria chilensis			
38	Bosque esclerofilo mediterráneo	436	LC	LC
	andino de Kageneckia angustifolia y			
	Guindilia trinervis			
39	Bosque esclerofilo mediterráneo	485	LC	LC
	costero de Cryptocarya alba y			
	Peumus boldus			
40	Bosque esclerofilo mediterráneo	518	LC	LC
	costero de Lithrea caustica y			
	Cryptocarya alba			
41	Bosque esclerofilo mediterráneo	389	LC	LC
	andino de Quillaja saponaria y Lithrea			
	caustica			
42	Bosque esclerofilo mediterráneo	585	LC	LC
	costero de Lithrea caustica y Azara			
	integrifolia			
43	Bosque esclerofilo mediterráneo	804	LC	LC
	interior de Lithrea caustica y Peumus			
	boldus			
44	Bosque esclerofilo mediterráneo	171	LC	LC
	andino de Lithrea caustica y Lomatia			
	hirsuta			
45	Bosque esclerofilo psamófilo	464	LC	LC
	mediterráneo interior de Quillaja			
	saponaria y Fabiana imbricata			
46	Bosque caducifolio mediterráneo	88	LC	LC
	costero de Nothofagus macrocarpa y			
	Ribes punctatum			
47	Bosque caducifolio mediterráneo	942	LC	LC
	interior de Nothofagus obliqua y			
	Cryptocarya alba			
48	Bosque caducifolio mediterráneo	488	LC	LC
	andino de Nothofagus obliqua y			
	Austrocedrus chilensis			
49	Bosque caducifolio mediterráneo	104	LC	LC
	costero de Nothofagus glauca y Azara			
	petiolaris			
50	Bosque caducifolio mediterráneo	251	LC	LC
	costero de Nothofagus glauca y			
	Persea lingue			
51	Bosque caducifolio mediterráneo	132	LC	LC
	andino de Nothofagus glauca y N.			
	obliqua			
52	Bosque caducifolio mediterráneo-	262	LC	LC
	templado costero de Nothofagus			

	obliqua y Gomortega keule			
53	Bosque caducifolio templado de	785	LC	LC
	Nothofagus obliqua y Persea lingue			
54	Bosque caducifolio templado de	1940	LC	LC
	Nothofagus obliqua y Laurelia			
	sempervirens			
55	Bosque mixto templado costero de	422	LC	LC
	Nothofagus dombeyi y N. obliqua			
56	Bosque caducifolio templado costero	174	LC	LC
	de Nothofagus alpina y Persea lingue			
57	Bosque caducifolio mediterráneo-	100	LC	LC
	templado andino de Nothofagus			
	alpina y N. obliqua			
58	Bosque caducifolio templado andino	616	LC	LC
	de Nothofagus alpina y Dasyphyllum			
	diacanthoides			
59	Bosque caducifolio templado andino	274	LC	LC
	de Nothofagus alpina y N. dombeyi			
60	Bosque caducifolio mediterráneo-	109	LC	LC
	templado andino de Nothofagus			
	pumilio y N. obliqua			
61	Bosque caducifolio templado andino	352	LC	LC
0-	de Nothofagus pumilio y Araucaria	332		
	araucana			
62	Bosque caducifolio templado andino	462	LC	LC
02	de Nothofagus pumilio y Drimys	402		20
	andina			
63	Bosque caducifolio templado andino	1538	LC	LC
03	de Nothofagus pumilio y Berberis	1556		LC
	ilicifolia			
64	Bosque caducifolio templado andino	468	LC	LC
04	de Nothofagus pumilio y Azara alpina	400		LC
65	Bosque caducifolio templado andino	872	LC	LC
03	de Nothofagus pumilio y Ribes	0/2	LC	LC
	cucullatum			
		104	10	1.0
66	Bosque caducifolio templado andino	194	LC	LC
	de Nothofagus pumilio y			
67	Chiliotrichum diffusum	600	1.0	1.0
67	Bosque caducifolio templado-	698	LC	LC
	antiboreal andino de Nothofagus			
	pumilio y Maytenus disticha	400	1.0	- 10
68	Matorral caducifolio templado	109	LC	LC
	andino de Nothofagus antarctica		 	
69	Matorral caducifolio templado	502	LC	LC
	andino de Nothofagus antarctica y			
	Empetrum rubrum			
70	Matorral arborescente caducifolio	368	LC	LC
	templado de Nothofagus antarctica y			
	Berberis microphylla			
71	Matorral arborescente caducifolio	767	LC	LC
	templado-antiboreal andino de N.			
	antarctica y Chiliotrichum diffusum			

72	Bosque laurifolio templado costero de Aextoxicon punctatum y Laurelia	121	LC	LC
	sempervirens			
73	Bosque laurifolio templado costero de Weinmannia trichosperma y Laureliopsis philippiana	256	LC	LC
74	Bosque laurifolio templado interior	1010	LC	LC
74	de Nothofagus dombeyi y Eucryphia	1010		LC
75	Bosque resinoso templado costero	30	VU	VU
	de Araucaria araucana			
76	Bosque resinoso templado andino de	301	LC	LC
	Araucaria araucana y Nothofagus			
	dombeyi			
77	Bosque resinoso templado andino de	142	LC	LC
	Araucaria araucana y Festuca			
	scabriuscula			
78	Bosque resinoso templado andino de	17	EN	NT
	Austrocedrus chilensis y Nothofagus			
	dombeyi			
79	Bosque resinoso templado costero	85	LC	LC
	de Fitzroya cupressoides			
80	Bosque resinoso templado andino de	310	LC	LC
	Fitzroya cupressoides			
81	Bosque resinoso templado costero	282	LC	LC
	de Pilgerodendron uvifera y Tepualia			
	stipularis			
82	Bosque resinoso templado costero	821	LC	LC
	de Pilgerodendron uvifera y Astelia			
	pumila			
83	Bosque siempreverde templado	81	LC	LC
	andino de Nothofagus dombeyi y			
	Gaultheria phillyreifolia			
84	Bosque siempreverde templado	299	LC	LC
	andino de Nothofagus dombeyi y			
	Saxegothaea conspicua			
85	Bosque siempreverde templado	1636	LC	LC
	interior de Nothofagus nitida y			
	Podocarpus nubigena			
86	Bosque siempreverde templado	1287	LC	LC
	interior de Nothofagus betuloides y			
	Desfontainia spinosa			
87	Bosque siempreverde templado	77	LC	LC
0.	andino de Nothofagus betuloides y			
	Laureliopsis philippiana			
88	Bosque siempreverde templado	592	LC	LC
	andino de Nothofagus betuloides y	33 2		
	Chusquea macrostachya			
89	Bosque siempreverde mixto	348	LC	LC
09	templado andino de Nothofagus	340		LC
	betuloides y Berberis serrato-dentata			
90	Bosque mixto templado-antiboreal	349	LC	LC
30	bosque mixto tempiado-antiboreal	343	LC	LC

	andino de Nothofagus betuloides y			
	Nothofagus pumilio			
91	Bosque siempreverde templado	415	LC	LC
71	costero de Nothofagus betuloides y	413		LC
	Embothrium coccineum			
92	Bosque siempreverde templado	596	LC	LC
32	costero de Nothofagus betuloides y	330		20
	Drimys winteri			
93	Matorral siempreverde templado	335	LC	LC
33	costero de Pilgerodendron uvifera y	333		
	Nothofagus nitida			
94	Turbera templada costera de Donatia	3854	LC	LC
34	fascicularis y Oreobolus obtusangulus	3034		
95	Turbera antiboreal costera de Astelia	1288	LC	LC
33	pumila y Donatia fascicularis	1200		LC
96	Turbera antiboreal costera de Bolax	443	LC	LC
50	bovei y Phyllachne uliginosa	443		LC
97	Turbera templada-antiboreal interior	902	LC	LC
31	de Sphagnum magellanicum y	302		LC
	Schoenus antarcticus			
98	Matorral bajo tropical andino de	681	LC	LC
36	Fabiana ramulosa y Diplostephium	001		LC
	meyenii			
99	Matorral bajo tropical andino de	322	LC	LC
33	Parastrephia lucida y Azorella	322		LC
	compacta			
100	Matorral bajo tropical andino de	158	LC	LC
100	Parastrephia lucida y Festuca	136	LC	LC
	orthophylla			
101	Matorral bajo tropical andino de	688	LC	LC
101	Parastrephia lepidophylla y P.	000		LC
	qudrangularis			
102	Matorral bajo tropical andino de	186	LC	LC
102	Azorella compacta y Pycnophyllum	100		LC
	molle			
103	Matorral bajo tropical andino de	398	LC	LC
103	Fabiana denudata y Chuquiraga	398		LC
	atacamensis			
104	Matorral bajo tropical andino de	397	LC	LC
104	Fabiana squamata y Festuca	337		LC
	chrysophylla			
105	Matorral bajo tropical andino de	828	LC	LC
103	Fabiana bryoides y Parastrephia	020	LC	LC
	quadrangularis			
106	Matorral bajo tropical andino de	1235	LC	LC
100		1233	[LC
	Mulinum crassifolium y Urbania			
107	pappigera Matorral bajo tropical andino de	207	10	1.0
107		397	LC	LC
100	Artemisia copa y Stipa frigida	271	10	1.0
108	Matorral bajo tropical andino de	371	LC	LC
100	Adesmia frigida y Stipa frigida	1405	10	1.0
109	Matorral bajo tropical-mediterráneo	1495	LC	LC

	andino de Adesmia hystrix y Ephedra breana			
110	Matorral bajo tropical-mediterráneo	1319	LC	LC
	andino de Adesmia subterranea y	1010		
	Adesmia echinus			
111	Matorral bajo mediterráneo costero	5	EN	NT
	de Chuquiraga oppositifolia y			
	Mulinum spinosum			
112	Matorral bajo mediterráneo andino	403	LC	LC
	de Chuquiraga oppositifolia y			
	Nardophyllum lanatum			
113	Matorral bajo mediterráneo andino	915	LC	LC
	de Laretia acaulis y Berberis			
	empetrifolia			
114	Matorral bajo mediterráneo andino	185	LC	LC
	de Chuquiraga oppositifolia y Discaria			
	articulata			
115	Matorral bajo templado andino de	57	LC	LC
	Discaria chacaye y Berberis			
	empetrifolia			
116	Matorral bajo emplado andino de	2	CR	NT
	Adesmia longipes y Senecio bipontini			
117	Matorral bajo templado-antiboreal	1098	LC	LC
	andino de Bolax gummifera y			
440	Azorella selago	202		
118	Herbazal tropical andino de	392	LC	LC
110	Chaetanthera sphaeroidalis	F04	1.0	1.0
119	Herbazal mediterráneo de	501	LC	LC
	Nastanthus spathulatus y			
120	Menonvillea spathulata Herbazal mediterráneo andino de O.	110	LC	LC
120	adenophylla y Pozoa coriacea	119	LC	LC
121	Herbazal templado andino de	372	LC	LC
121	Nassauvia dentata y Senecio	3/2	LC	LC
	portalesianus			
122	Herbazal antiboreal andino de	134	LC	LC
122	Nassauvia pygmaea y N. lagascae	154		
123	Estepa mediterránea-templada de	463	LC	LC
123	Festuca pallescens y Mulinum	103		20
	spinosum			
124	Estepa mediterránea-templada	607	LC	LC
	oriental de Festuca gracillima			
125	Estepa templada oriental de Festuca	768	LC	LC
	gracillima y Empetrum rubrum			
126	Estepa templada oriental de Festuca	596	LC	LC
	gracillima y Chiliotrichum diffusum			
127	Estepa templada oriental de Festuca	65	LC	LC
	gracillima y Mulinum spinosum			

Tabla 5. Valores definidos para el cálculo del sub criterio C2 (Estrés Hídrico)

ID Piso de		I	Estrés Hi	drico - Co	nteo de	celdas	por de	cil			Celdas	Porcentaje	Evaluación
vegetación	0-0,1	01-	0,2-	0,3-	0,9-	Total	umbral	C2					
		0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1			

1 3048 0 0 0 0 0 0 0 0 0	1	2040	0		_		0					2040	0.0	1.0
3													-	
4													· ·	
5 1046 0 0 0 0 0 0 0 1046 0,0 LC 6 4306 0 <									_					
6														
7										_				
8 45 0 0 0 0 0 0 0 45 0,0 LC 9 1007 0 0 0 0 0 0 0 0 1007 0,0 LC 10 924 0														
9 1007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
10								_	_	_				
11 3374 0 0 0 0 0 0 0 3374 0,0 LC 12 2506 0									_					
12 2506 0 0 0 0 0 0 0 2506 0,0 LC 13 2162 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 10 10 10 10 10 10 10 10 0														
13 2162 0 0 0 0 0 0 0 2162 0,0 LC 14 807 108 68 0 0 0 0 0 983 0,0 LC 15 17311 6641 24 0 0 0 0 0 23976 0,0 LC 16 1680 0 0 0 0 0 0 0 0 0 0 0 0 0 1680 0,0 LC 17 0 31 3835 77 0 0 0 0 16789 0,0 LC 18 326 3661 12801 1 0 0 0 0 0 16789 0,0 LC 19 0 0 3135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>										_				
14 807 108 68 0 0 0 0 0 983 0,0 LC 15 17311 6641 24 0 0 0 0 0 23976 0,0 LC 16 1680 1680 0,0 LC 1 0														
15 17311 6641 24 0 0 0 0 0 23976 0,0 LC 16 1680 0 0 0 0 0 0 0 1680 0,0 LC 17 0 31 3835 77 0 0 0 0 0 3943 2,0 LC 18 326 3661 12801 1 0 0 0 0 0 16789 0,0 LC 19 0 0 3127 3136 0 0 0 0 6263 50,1 LC 20 0 5 8636 947 0 0 0 0 9588 9,9 LC 21 0 0 113 1346 0 0 0 0 1459 92,3 V 22 31137 0 0 0 0 0 0 0														
16 1680 0 0 0 0 0 0 0 1680 0,0 LC 17 0 31 3835 77 0 0 0 0 0 3943 2,0 LC 18 326 3661 12801 1 0 0 0 0 16789 0,0 LC 19 0 0 3127 3136 0 0 0 0 6263 50,1 LC 20 0 5 8636 947 0 0 0 0 5888 9,9 LC 21 0 0 113 1346 0 0 0 0 0 1459 92,3 V 22 31137 0 0 0 0 0 0 0 125 13288 1 0 0 0 0 0 0 15783 0,0 LC										_				
17 0 31 3835 77 0 0 0 0 0 3943 2,0 LC 18 326 3661 12801 1 0 0 0 0 0 16789 0,0 LC 19 0 0 3127 3136 0 0 0 0 6263 50,1 LC 20 0 5 8636 947 0 0 0 0 0 9588 9,9 LC 21 0 0 113 1346 0 0 0 0 0 1459 92,3 V 22 31137 0 0 0 0 0 0 0 1459 92,3 V 22 31137 0 0 0 0 0 0 0 1459 92,3 V 22 31137 0 0 0 0 0									_		_			
18 326 3661 12801 1 0 0 0 0 16789 0,0 LC 19 0 0 3127 3136 0 0 0 0 6263 50,1 LC 20 0 5 8636 947 0 0 0 0 0 9588 9,9 LC 21 0 0 113 1346 0 0 0 0 0 1459 92,3 V 22 31137 0 0 0 0 0 0 0 1459 92,3 V 22 31137 0 0 0 0 0 0 0 1459 92,3 V 22 31137 0 0 0 0 0 0 0 1459 92,3 V 22 31137 0 0 0 0 0 0 0														
19 0 0 3127 3136 0 0 0 0 0 6263 50,1 LC 20 0 5 8636 947 0 0 0 0 0 9588 9,9 LC 21 0 0 113 1346 0 0 0 0 0 1459 92,3 V 22 31137 0 0 0 0 0 0 0 1459 92,3 V 22 31137 0 0 0 0 0 0 0 1459 92,3 V 23 18962 0 0 0 0 0 0 0 15783 0,0 LC 24 15783 0 0 0 0 0 0 15783 0,0 LC 25 13288 51 0 0 0 0 0 0														
20 0 5 8636 947 0 0 0 0 9588 9,9 LC 21 0 0 113 1346 0 0 0 0 1459 92,3 V 22 31137 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
21 0 0 113 1346 0 0 0 0 1459 92,3 V 22 31137 0								_						
22 31137 0 0 0 0 0 0 0 31137 0,0 LC 23 18962 0 0 0 0 0 0 0 0 18962 0,0 LC 24 15783 0 0 0 0 0 0 0 15783 0,0 LC 25 13288 51 0 0 0 0 0 0 0 13339 0,0 LC 26 23 931 3872 24 0 0 0 0 0 4850 0,5 LC 27 0 0 589 2170 0 0 0 0 0 2759 78,7 LC 28 0 0 468 231 0 0 0 0 827 0,0 LC 30 2169 0 0 0 0 0														
23 18962 0 0 0 0 0 0 0 18962 0,0 LC 24 15783 0 0 0 0 0 0 0 0 15783 0,0 LC 25 13288 51 0 0 0 0 0 0 0 13339 0,0 LC 26 23 931 3872 24 0 0 0 0 4850 0,5 LC 27 0 0 589 2170 0 0 0 0 0 2759 78,7 LC 28 0 0 468 231 0 0 0 0 0 699 33,0 LC 29 827 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									_					
24 15783 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								_						
25 13288 51 0 0 0 0 0 0 13339 0,0 LC 26 23 931 3872 24 0 0 0 0 0 4850 0,5 LC 27 0 0 589 2170 0 0 0 0 0 2759 78,7 LC 28 0 0 468 231 0 0 0 0 0 699 33,0 LC 29 827 0 0 0 0 0 0 0 827 0,0 LC 30 2169 0 0 0 0 0 0 0 2169 0,0 LC 31 1499 0 0 0 0 0 0 0 0 14499 0,0 LC 32 0 0 2750 1984 0 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
26 23 931 3872 24 0 0 0 0 4850 0,5 LC 27 0 0 589 2170 0 0 0 0 0 2759 78,7 LC 28 0 0 468 231 0 0 0 0 699 33,0 LC 29 827 0 0 0 0 0 0 0 0 827 0,0 LC 30 2169 0 0 0 0 0 0 0 0 0 0 0 1C 31 1499 0 0 0 0 0 0 0 0 1C 1C 1C 32 0 0 2750 1984 0 0 0 0 4734 41,9 LC 33 0 0 15 1425 0 0 0														
27 0 0 589 2170 0 0 0 0 0 2759 78,7 LC 28 0 0 468 231 0 0 0 0 699 33,0 LC 29 827 0								_		_	_			
28 0 0 468 231 0 0 0 0 699 33,0 LC 29 827 0														
29 827 0														
30 2169 0 0 0 0 0 0 0 2169 0,0 LC 31 1499 0 0 0 0 0 0 0 0 1499 0,0 LC 32 0 0 2750 1984 0 0 0 0 0 4734 41,9 LC 33 0 0 15 1425 0 0 0 0 0 1440 99,0 V 34 0 0 0 4747 10 0 0 0 4757 100,0 V 35 0 0 0 4172 9344 0 0 0 13516 100,0 V 36 0 0 2596 91 0 0 0 0 2687 3,4 LC 37 0 0 6874 506 0 0 0														
31 1499 0 0 0 0 0 0 0 1499 0,0 LC 32 0 0 2750 1984 0 0 0 0 0 4734 41,9 LC 33 0 0 15 1425 0 0 0 0 0 1440 99,0 V 34 0 0 0 4747 10 0 0 0 4757 100,0 V 35 0 0 0 4172 9344 0 0 0 0 4757 100,0 V 36 0 0 2596 91 0 0 0 0 13516 100,0 V 37 0 0 6874 506 0 0 0 0 7380 6,9 LC 38 0 10 5770 297 0 0 0														
32 0 0 2750 1984 0 0 0 0 0 4734 41,9 LC 33 0 0 15 1425 0 0 0 0 0 1440 99,0 V 34 0 0 0 4747 10 0 0 0 4757 100,0 V 35 0 0 0 4172 9344 0 0 0 0 13516 100,0 V 36 0 0 2596 91 0 0 0 0 2687 3,4 LC 37 0 0 6874 506 0 0 0 0 0 7380 6,9 LC 38 0 10 5770 297 0 0 0 0 6077 4,9 LC 39 0 0 943 5847 0 0										_	_		· ·	
33 0 0 15 1425 0 0 0 0 0 1440 99,0 V 34 0 0 0 4747 10 0 0 0 0 4757 100,0 V 35 0 0 0 4172 9344 0 0 0 0 13516 100,0 V 36 0 0 2596 91 0 0 0 0 0 2687 3,4 LC 37 0 0 6874 506 0 0 0 0 0 7380 6,9 LC 38 0 10 5770 297 0 0 0 0 0 6077 4,9 LC 39 0 0 943 5847 0 0 0 0 0 6790 86,1 VU 40 0 0 3225 3939 0 0 0 0 0 7164 55,0 LC </td <td></td> <td>_</td> <td></td> <td></td> <td></td>											_			
34 0 0 0 4747 10 0 0 0 0 4757 100,0 V 35 0 0 0 4172 9344 0 0 0 0 13516 100,0 V 36 0 0 2596 91 0 0 0 0 0 2687 3,4 LC 37 0 0 6874 506 0 0 0 0 7380 6,9 LC 38 0 10 5770 297 0 0 0 0 6077 4,9 LC 39 0 0 943 5847 0 0 0 0 0 6790 86,1 VU 40 0 0 3225 3939 0 0 0 0 7164 55,0 LC						0			0		0		·	
35 0 0 0 4172 9344 0 0 0 0 13516 100,0 V 36 0 0 2596 91 0 0 0 0 0 0 2687 3,4 LC 37 0 0 6874 506 0 0 0 0 0 7380 6,9 LC 38 0 10 5770 297 0 0 0 0 6077 4,9 LC 39 0 0 943 5847 0 0 0 0 0 6790 86,1 VU 40 0 0 3225 3939 0 0 0 0 0 7164 55,0 LC						10	0		0	0	0			
37 0 0 6874 506 0 0 0 0 0 7380 6,9 LC 38 0 10 5770 297 0 0 0 0 0 6077 4,9 LC 39 0 0 943 5847 0 0 0 0 0 6790 86,1 VU 40 0 0 3225 3939 0 0 0 0 0 7164 55,0 LC			0	0	4172	9344	0	0	0	0	0		· ·	V
37 0 0 6874 506 0 0 0 0 0 7380 6,9 LC 38 0 10 5770 297 0 0 0 0 0 6077 4,9 LC 39 0 0 943 5847 0 0 0 0 0 6790 86,1 VU 40 0 0 3225 3939 0 0 0 0 0 7164 55,0 LC	36	0	0	2596	91	0	0	0	0	0	0	2687	3,4	LC
39 0 0 943 5847 0 0 0 0 0 6790 86,1 VU 40 0 0 3225 3939 0 0 0 0 0 7164 55,0 LC		0	0	6874	506	0	0	0	0	0	0	7380		
40 0 0 3225 3939 0 0 0 0 0 7164 55,0 LC	38	0	10	5770	297	0	0	0	0	0	0	6077	4,9	LC
	39	0	0	943	5847	0	0	0	0	0	0	6790	86,1	VU
41 0 0 4/3 5035 4 0 0 0 0 5/92 01 0 1/1	40	0	0	3225	3939	0	0	0	0	0	0	7164	55,0	LC
+1 0 0 443 3033 4 0 0 0 0 0 3402 31,9 VO	41	0	0	443	5035	4	0	0	0	0	0	5482	91,9	VU

42	0	0	24	8081	198	0	0	0	0	0	8303	99,7	VU
43	0	0	0	10790	719	0	0	0	0	0	11509	100,0	VU
44	0	0	33	2376	61	0	0	0	0	0	2470	98,7	VU
45	0	0	0	349	6411	0	0	0	0	0	6760	100,0	VU
46	0	0	11	1204	0411	0	0	0	0	0	1215	99,1	VU
47	0	0	0	7192	6580	0	0	0	0	0	13772	100,0	VU
48	0	0	4	5888	1055	14	0	0	0	0	6961	99,9	VU
49	0	0	0	2	1503	0	0	0	0	0	1505	100,0	VU
50	0	0	0	787	2796	0	0	0	0	0	3583	100,0	VU
51	0	0	0	512	1409	0	0	0	0	0	1921	100,0	VU
52	0	0	50	2389	1385	0	0	0	0	0	3824	98,7	VU
53	0	0	0	11226	330	0	0	0	0	0	11556	100,0	VU
54	0	0	4783	24528	0	0	0	0	0	0	29311	83,7	VU
55	0	0	69	5313	840	0	0	0	0	0	6222	98,9	VU
56	0	0	0	936	1626	0	0	0	0	0	2562	100,0	VU
57	0	0	0	857	614	0	0	0	0	0	1471	100,0	VU
58	0	0	96	9060	0	0	0	0	0	0	9156	99,0	VU
59	0	0	13	4064	1	0	0	0	0	0	4078	99,7	VU
60	0	0	0	660	982	0	0	0	0	0	1642	100,0	VU
61	0	0	0	5209	0	0	0	0	0	0	5209	100,0	VU
62	0	0	4962	2077	0	0	0	0	0	0	7039	29,5	LC
63	0	23273	2062	0	0	0	0	0	0	0	25335	0,0	LC
64	0	0	0	5910	969	0	0	0	0	0	6879	100,0	VU
65	78	5714	8091	401	0	0	0	0	0	0	14284	2,8	LC
66	0	3565	9	0	0	0	0	0	0	0	3574	0,0	LC
67	1907	11572	2	0	0	0	0	0	0	0	13481	0,0	LC
68	0	603	1300	0	0	0	0	0	0	0	1903	0,0	LC
69	325	7789	568	0	0	0	0	0	0	0	8682	0,0	LC
70	0	3846	2342	0	0	0	0	0	0	0	6188	0,0	LC
71	4601	9920	2	0	0	0	0	0	0	0	14523	0,0	LC
72	0	39	31	1712	0	0	0	0	0	0	1782	96,1	VU
73	0	0	3654	254	0	0	0	0	0	0	3908	6,5	LC
74	0	0	10610	4747	0	0	0	0	0	0	15357	30,9	LC
75	0	0	0	0	439	0	0	0	0	0	439	100,0	VU
76	0	0	0	4410	1	0	0	0	0	0	4411	100,0	VU
77	0	0	0	2099	0	0	0	0	0	0	2099	100,0	VU
78	0	6	263	0	0	0	0	0	0	0	269	0,0	LC
79	0	0	1315	20	0	0	0	0	0	0	1335	1,5	LC
80	0	0	4483	357	0	0	0	0	0	0	4840	7,4	LC
81	0	806	3646	0	0	0	0	0	0	0	4452	0,0	LC
82	1	10111	2309	0	0	0	0	0	0	0	12421	0,0	LC

83	0	0	2	1281	0	0	0	0	0	0	1283	99,8	VU
84	0	2	3240	1392	0	0	0	0	0	0	4634	30,0	LC
85	0	391	24181	962	0	0	0	0	0	0	25534	3,8	LC
86	0	4776	16104	0	0	0	0	0	0	0	20880	0,0	LC
87	0	0	1194	0	0	0	0	0	0	0	1194	0,0	LC
88	0	639	8956	0	0	0	0	0	0	0	9595	0,0	LC
89	0	3561	2363	0	0	0	0	0	0	0	5924	0,0	LC
90	1486	4859	0	0	0	0	0	0	0	0	6345	0,0	LC
91	2855	4876	0	0	0	0	0	0	0	0	7731	0,0	LC
92	4151	6217	0	0	0	0	0	0	0	0	10368	0,0	LC
93	342	4556	168	0	0	0	0	0	0	0	5066	0,0	LC
94	11904	46171	4	0	0	0	0	0	0	0	58079	0,0	LC
95	15546	446	0	0	0	0	0	0	0	0	15992	0,0	LC
96	4969	3225	0	0	0	0	0	0	0	0	8194	0,0	LC
97	10934	3790	0	0	0	0	0	0	0	0	14724	0,0	LC
98	8060	0	0	0	0	0	0	0	0	0	8060	0,0	LC
99	3741	0	0	0	0	0	0	0	0	0	3741	0,0	LC
100	1897	0	0	0	0	0	0	0	0	0	1897	0,0	LC
101	7832	0	0	0	0	0	0	0	0	0	7832	0,0	LC
102	1957	0	0	0	0	0	0	0	0	0	1957	0,0	LC
103	5054	0	0	0	0	0	0	0	0	0	5054	0,0	LC
104	4955	0	0	0	0	0	0	0	0	0	4955	0,0	LC
105	10560	0	0	0	0	0	0	0	0	0	10560	0,0	LC
106	15046	0	0	0	0	0	0	0	0	0	15046	0,0	LC
107	5108	0	0	0	0	0	0	0	0	0	5108	0,0	LC
108	4799	0	0	0	0	0	0	0	0	0	4799	0,0	LC
109	7685	4303	7838	43	0	0	0	0	0	0	19869	0,2	LC
110	10896	1948	4120	499	0	0	0	0	0	0	17463	2,9	LC
111	0	0	0	76	0	0	0	0	0	0	76	100,0	VU
112	0	133	5031	428	29	0	0	0	0	0	5621	8,1	LC
113	0	341	8620	3287	514	3	0	0	0	0	12765	29,8	LC
114	0	0	164	959	1548	21	0	0	0	0	2692	93,9	VU
115	0	0	0	674	186	0	0	0	0	0	860	100,0	VU
116	0	0	25	0	0	0	0	0	0	0	25	0,0	LC
117	7831	11343	0	0	0	0	0	0	0	0	19174	0,0	LC
118	3820	362	980	37	0	0	0	0	0	0	5199	0,7	LC
119	0	818	5363	874	0	0	0	0	0	0	7055	12,4	LC
120	0	0	344	844	541	1	0	0	0	0	1730	80,1	VU
121	0	6332	71	0	0	0	0	0	0	0	6403	0,0	LC
122	64	2572	0	0	0	0	0	0	0	0	2636	0,0	LC
123	0	4272	3456	0	0	0	0	0	0	0	7728	0,0	LC

124	26	10966	0	0	0	0	0	0	0	0	10992	0,0	LC
125	1117	13381	0	0	0	0	0	0	0	0	14498	0,0	LC
126	2367	8904	19	0	0	0	0	0	0	0	11290	0,0	LC
127	0	314	851	0	0	0	0	0	0	0	1165	0,0	LC

Tabla 6. Valores definidos para el cálculo del sub criterio C2 (Estrés Térmico Estival)

ID Piso de		Estr	rés Térmi	co Estiva	l - Cont	eo de c	eldas p	or decíl			Celdas	Porcentaje	Evaluación
vegetación	0-	01-	0,2-	0,3-	0,4-	0,5-	0,6-	0,7-	0,8-	0,9-	Total	umbral	C2
	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1			
1	0	0	3048	0	0	0	0	0	0	0	3048	0,0	LC
2	0	91	68362	1204	0	0	0	0	0	0	69657	1,7	LC
3	0	0	11170	168	0	0	0	0	0	0	11338	1,5	LC
4	0	39	641	0	0	0	0	0	0	0	680	0,0	LC
5	0	0	1046	0	0	0	0	0	0	0	1046	0,0	LC
6	0	0	4306	0	0	0	0	0	0	0	4306	0,0	LC
7	0	0	1567	0	0	0	0	0	0	0	1567	0,0	LC
8	0	0	45	0	0	0	0	0	0	0	45	0,0	LC
9	0	0	1007	0	0	0	0	0	0	0	1007	0,0	LC
10	0	0	924	0	0	0	0	0	0	0	924	0,0	LC
11	0	0	3374	0	0	0	0	0	0	0	3374	0,0	LC
12	0	0	2506	0	0	0	0	0	0	0	2506	0,0	LC
13	0	0	2162	0	0	0	0	0	0	0	2162	0,0	LC
14	0	0	983	0	0	0	0	0	0	0	983	0,0	LC
15	0	194	23157	625	0	0	0	0	0	0	23976	2,6	LC
16	0	6	1674	0	0	0	0	0	0	0	1680	0,0	LC
17	0	0	3943	0	0	0	0	0	0	0	3943	0,0	LC
18	46	312	15596	835	0	0	0	0	0	0	16789	5,0	LC
19	0	0	6180	83	0	0	0	0	0	0	6263	1,3	LC
20	82	287	6466	2753	0	0	0	0	0	0	9588	28,7	LC
21	0	0	1459	0	0	0	0	0	0	0	1459	0,0	LC
22	0	1057	30080	0	0	0	0	0	0	0	31137	0,0	LC
23	0	3213	15749	0	0	0	0	0	0	0	18962	0,0	LC
24	0	0	15783	0	0	0	0	0	0	0	15783	0,0	LC
25	3535	4342	5462	0	0	0	0	0	0	0	13339	0,0	LC
26	104	387	3685	674	0	0	0	0	0	0	4850	13,9	LC
27	0	0	1032	1725	2	0	0	0	0	0	2759	62,6	LC
28	0	0	694	5	0	0	0	0	0	0	699	0,7	LC
29	0	0	827	0	0	0	0	0	0	0	827	0,0	LC
30	0	0	2169	0	0	0	0	0	0	0	2169	0,0	LC
31	0	760	739	0	0	0	0	0	0	0	1499	0,0	LC
32	0	0	2549	2185	0	0	0	0	0	0	4734	46,2	LC
33	0	0	25	1415	0	0	0	0	0	0	1440	98,3	VU
34	0	2957	1800	0	0	0	0	0	0	0	4757	0,0	LC
35	0	0	12469	1047	0	0	0	0	0	0	13516	7,7	LC
36	0	583	2104	0	0	0	0	0	0	0	2687	0,0	LC
37	0	0	5204	2176	0	0	0	0	0	0	7380	29,5	LC

38	20		17	762	F2C2	22		_	0	T 0		C077	07.1	1/11
40	38	2	17	763	5262	33	0	0	0	0	0	6077	87,1	VU
41														
42								_						
43							_		_					
44 0 0 83 2387 0 0 0 0 2470 96,6 VU 45 0 0 3757 3003 0 0 0 0 0 6760 44,4 LC 46 0 0 1208 7 0 0 0 0 0 1215 0,6 LC 47 0 8 8193 5571 0 0 0 0 0 1215 0,6 LC 48 0 0 11 6669 281 14 0 0 0 6975 99,8 VU 49 0 120 1385 0 0 0 0 0 0 1505 0,0 LC 50 0 1739 2085 0 0 0 0 0 0 1521 100,0 VU 51 0 1739 2085 0							_							
45														
46 0 0 1208 7 0 0 0 0 0 1215 0,6 LC 47 0 8 8193 5571 0 0 0 0 0 13772 40,5 LC 48 0 0 11 6669 281 14 0 0 0 6975 99,8 VU 49 0 120 1385 0 0 0 0 0 0 0 1505 0,0 LC 50 0 1781 1802 0 0 0 0 0 3838 0,0 LC 51 0 0 0 0 0 0 0 0 1505 10,0 LC 51 0 0 0 0 0 0 0 0 1421 100,0 VU 52 0 1739 2085 0 0														
47 0 8 8193 5571 0 0 0 0 13772 40,5 LC 48 0 0 11 6669 281 14 0 0 0 6975 99,8 VU 49 0 120 1385 0 0 0 0 0 1505 0,0 LC 50 0 1781 1802 0 0 0 0 0 1505 0,0 LC 51 0 0 0 1921 0 0 0 0 1505 0,0 LC 52 0 1739 2085 0 0 0 0 0 0 11556 51,3 LC 53 0 500 5313 5925 0 0 0 0 0 29311 81,9 VU 55 0 1770 4452 0 0 0									_					
48 0 0 11 6669 281 14 0														
49 0 120 1385 0 0 0 0 0 0 1505 0,0 LC 50 0 1781 1802 0 0 0 0 0 0 0 0 0 0 10 1505 0,0 LC 51 0 0 0 1921 0 0 0 0 0 1921 100,0 VU 52 0 1739 2085 0 0 0 0 0 1322 100,0 LC 53 0 500 5313 23721 277 0 0 0 0 11555 51,3 LC 54 0 0 5313 23721 277 0 0 0 29311 81,9 VU 55 0 1770 4452 0 0 0 0 0 6222 0,0 LC 57 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
50 0 1781 1802 0 0 0 0 0 3583 0,0 LC 51 0 0 0 1921 0 0 0 0 0 1921 100,0 VU 52 0 1739 2085 0 0 0 0 0 0 3824 0,0 LC 53 0 500 5131 5925 0 0 0 0 0 11556 51,3 LC 54 0 0 5313 23721 277 0 0 0 0 29311 81,9 VU 55 0 1770 4452 0 0 0 0 0 6222 0,0 LC 56 0 87 2475 0 0 0 0 0 0 1471 100,0 VU 58 0 0 0 1472 0														
51 0 0 0 1921 0 0 0 0 1921 100,0 VU 52 0 1739 2085 0 0 0 0 0 0 3824 0,0 LC 53 0 500 5131 5925 0 0 0 0 0 11556 51,3 LC 54 0 0 5313 23721 277 0 0 0 0 29311 81,9 VU 55 0 1770 4452 0 0 0 0 0 6222 0,0 LC 56 0 87 2475 0 0 0 0 0 0 2562 0,0 LC 57 0 0 0 1471 0 0 0 0 1471 100,0 VU 58 0 0 0 7727 1429 0														
52 0 1739 2085 0 0 0 0 0 0 3824 0,0 LC 53 0 500 5131 5925 0 0 0 0 0 11556 51,3 LC 54 0 0 5313 23721 277 0 0 0 0 29311 81,9 VU 55 0 1770 4452 0 0 0 0 0 6222 0,0 LC 56 0 87 2475 0 0 0 0 0 0 2562 0,0 LC 57 0 0 0 1471 0 0 0 0 1471 100,0 VU 58 0 0 0 7727 1429 0 0 0 0 1471 100,0 VU 60 0 0 0 3667														
53 0 500 5131 5925 0 0 0 0 11556 51,3 LC 54 0 0 5313 23721 277 0 0 0 0 29311 81,9 VU 55 0 1770 4452 0 0 0 0 0 0 29311 81,9 VU 56 0 1770 4452 0 0 0 0 0 2562 0,0 LC 57 0 0 0 1471 0 0 0 0 1471 100,0 VU 58 0 0 0 7727 1429 0 0 0 1471 100,0 VU 59 0 0 0 3667 411 0 0 0 0 1624 100,0 VU 61 0 0 0 1642 0 0													-	
54 0 0 5313 23721 277 0 0 0 0 29311 81,9 VU 55 0 1770 4452 0 0 0 0 0 0 6222 0,0 LC 56 0 87 2475 0 0 0 0 0 0 2562 0,0 LC 57 0 0 0 1471 0 0 0 0 1471 100,0 VU 58 0 0 0 7727 1429 0 0 0 9156 100,0 VU 59 0 0 0 3667 411 0 0 0 4078 100,0 VU 60 0 0 0 1642 0 0 0 0 0 100,0 VU 61 0 0 0 4675 534 0 0							_	_						
55 0 1770 4452 0 0 0 0 0 6222 0,0 LC 56 0 87 2475 0 0 0 0 0 0 2562 0,0 LC 57 0 0 0 1471 0 0 0 0 1471 100,0 VU 58 0 0 0 7727 1429 0 0 0 9156 100,0 VU 59 0 0 0 3667 411 0 0 0 4078 100,0 VU 60 0 0 1642 0 0 0 0 4078 100,0 VU 61 0 0 1642 0 0 0 0 0 100,0 VU 62 0 0 242 6795 2 0 0 0 0 7039 96,6						_								
56 0 87 2475 0 0 0 0 0 0 2562 0,0 LC 57 0 0 0 1471 0 0 0 0 1471 100,0 VU 58 0 0 0 7727 1429 0 0 0 0 9156 100,0 VU 59 0 0 0 3667 411 0 0 0 0 4078 100,0 VU 60 0 0 1642 0 0 0 0 0 4078 100,0 VU 61 0 0 0 1642 0 0 0 0 0 1642 100,0 VU 61 0 0 0 4675 534 0 0 0 0 0 0 100,0 VU 63 0 0 7715 15620							_							
57 0 0 0 1471 0 0 0 0 1471 100,0 VU 58 0 0 0 7727 1429 0 0 0 0 9156 100,0 VU 59 0 0 0 3667 411 0 0 0 0 4078 100,0 VU 60 0 0 0 1642 0 0 0 0 4078 100,0 VU 61 0 0 0 4675 534 0 0 0 5209 100,0 VU 62 0 0 242 6795 2 0 0 0 7039 96,6 VU 63 0 0 9715 15620 0 0 0 0 25335 61,7 LC 64 0 0 281 6598 0 0 0 0<					0	0		0	0	0	0			
58 0 0 0 7727 1429 0 0 0 9156 100,0 VU 59 0 0 0 3667 411 0 0 0 0 4078 100,0 VU 60 0 0 0 0 0 0 0 0 4078 100,0 VU 61 0 0 0 1642 100,0 VU 0 0 0 1642 100,0 VU 61 0 0 0 4675 534 0 0 0 0 5209 100,0 VU 62 0 0 242 6795 2 0 0 0 0 7039 96,6 VU 63 0 0 0 0 0 0 0 25335 61,7 LC 64 0 0 281 6598 0 0 0		0	87		0	0	0	0	0	0	0	2562		
59 0 0 0 3667 411 0 0 0 0 4078 100,0 VU 60 0 0 0 1642 0 0 0 0 1642 100,0 VU 61 0 0 0 4675 534 0 0 0 0 5209 100,0 VU 62 0 0 242 6795 2 0 0 0 7039 96,6 VU 63 0 0 9715 15620 0 0 0 0 25335 61,7 LC 64 0 0 281 6598 0 0 0 0 6879 95,9 VU 65 0 78 7899 6307 0 0 0 0 14284 44,2 LC 66 0 54 3520 0 0 0 0 0					1471		0	0	0	0	0			
60 0 0 1642 0 0 0 0 1642 100,0 VU 61 0 0 0 4675 534 0 0 0 5209 100,0 VU 62 0 0 242 6795 2 0 0 0 7039 96,6 VU 63 0 0 9715 15620 0 0 0 0 25335 61,7 LC 64 0 0 281 6598 0 0 0 0 6879 95,9 VU 65 0 78 7899 6307 0 0 0 0 14284 44,2 LC 66 0 54 3520 0 0 0 0 0 3574 0,0 LC 67 0 3007 10474 0 0 0 0 0 13481 0,0	58	0	0	0	7727	1429	0	0	0	0	0	9156	100,0	VU
61 0 0 4675 534 0 0 0 5209 100,0 VU 62 0 0 242 6795 2 0 0 0 7039 96,6 VU 63 0 0 9715 15620 0 0 0 0 0 25335 61,7 LC 64 0 0 281 6598 0 0 0 0 0 6879 95,9 VU 65 0 78 7899 6307 0 0 0 0 14284 44,2 LC 66 0 54 3520 0 0 0 0 0 3574 0,0 LC 67 0 3007 10474 0 0 0 0 0 13481 0,0 LC 68 0 0 1601 302 0 0 0 0	59	0	0	0	3667	411	0	0	0	0	0	4078	100,0	VU
62 0 0 242 6795 2 0 0 0 0 7039 96,6 VU 63 0 0 9715 15620 0 0 0 0 0 25335 61,7 LC 64 0 0 281 6598 0 0 0 0 0 6879 95,9 VU 65 0 78 7899 6307 0 0 0 0 0 14284 44,2 LC 66 0 54 3520 0 0 0 0 0 3574 0,0 LC 67 0 3007 10474 0 0 0 0 0 13481 0,0 LC 68 0 0 1601 302 0 0 0 0 1903 15,9 LC 69 0 1818 5947 917 0 <t< td=""><td>60</td><td>0</td><td>0</td><td>0</td><td>1642</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1642</td><td>100,0</td><td>VU</td></t<>	60	0	0	0	1642	0	0	0	0	0	0	1642	100,0	VU
63 0 0 9715 15620 0 0 0 0 25335 61,7 LC 64 0 0 281 6598 0 0 0 0 0 6879 95,9 VU 65 0 78 7899 6307 0 0 0 0 0 14284 44,2 LC 66 0 54 3520 0 0 0 0 0 3574 0,0 LC 67 0 3007 10474 0 0 0 0 0 13481 0,0 LC 68 0 0 1601 302 0 0 0 0 1903 15,9 LC 69 0 1818 5947 917 0 0 0 0 8682 10,6 LC 70 0 0 6037 151 0 0 0 <t< td=""><td>61</td><td>0</td><td>0</td><td>0</td><td>4675</td><td>534</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>5209</td><td>100,0</td><td>VU</td></t<>	61	0	0	0	4675	534	0	0	0	0	0	5209	100,0	VU
64 0 0 281 6598 0 0 0 0 0 6879 95,9 VU 65 0 78 7899 6307 0 0 0 0 0 14284 44,2 LC 66 0 54 3520 0 0 0 0 0 3574 0,0 LC 67 0 3007 10474 0 0 0 0 0 0 13481 0,0 LC 68 0 0 1601 302 0 0 0 0 0 15,9 LC 69 0 1818 5947 917 0 0 0 0 0 15,9 LC 70 0 0 6037 151 0 0 0 0 0 8682 10,6 LC 71 0 6143 8380 0 0 0	62	0	0	242	6795	2	0	0	0	0	0	7039	96,6	VU
65 0 78 7899 6307 0 0 0 0 0 14284 44,2 LC 66 0 54 3520 0 0 0 0 0 0 3574 0,0 LC 67 0 3007 10474 0 0 0 0 0 13481 0,0 LC 68 0 0 1601 302 0 0 0 0 1903 15,9 LC 69 0 1818 5947 917 0 0 0 0 1903 15,9 LC 70 0 0 6037 151 0 0 0 0 0 8682 10,6 LC 71 0 6143 8380 0 0 0 0 0 14523 0,0 LC 72 0 1165 617 0 0 0	63	0	0	9715	15620	0	0	0	0	0	0	25335	61,7	LC
66 0 54 3520 0 0 0 0 0 0 3574 0,0 LC 67 0 3007 10474 0 0 0 0 0 0 13481 0,0 LC 68 0 0 1601 302 0 0 0 0 1903 15,9 LC 69 0 1818 5947 917 0 0 0 0 0 8682 10,6 LC 70 0 0 6037 151 0 0 0 0 6188 2,4 LC 71 0 6143 8380 0 0 0 0 0 14523 0,0 LC 72 0 1165 617 0 0 0 0 0 1782 0,0 LC 73 0 25 3883 0 0 0 0	64	0	0	281	6598	0	0	0	0	0	0	6879	95,9	VU
67 0 3007 10474 0 0 0 0 0 13481 0,0 LC 68 0 0 1601 302 0 0 0 0 1903 15,9 LC 69 0 1818 5947 917 0 0 0 0 0 8682 10,6 LC 70 0 0 6037 151 0 0 0 0 0 6188 2,4 LC 71 0 6143 8380 0 0 0 0 0 14523 0,0 LC 72 0 1165 617 0 0 0 0 0 1782 0,0 LC 73 0 25 3883 0 0 0 0 0 3908 0,0 LC 74 0 0 5211 9491 655 0 0 0<	65	0	78	7899	6307	0	0	0	0	0	0	14284	44,2	LC
68 0 0 1601 302 0 0 0 0 1903 15,9 LC 69 0 1818 5947 917 0 0 0 0 0 0 8682 10,6 LC 70 0 0 6037 151 0 0 0 0 0 6188 2,4 LC 71 0 6143 8380 0 0 0 0 0 0 14523 0,0 LC 72 0 1165 617 0 0 0 0 0 0 1782 0,0 LC 73 0 25 3883 0 0 0 0 0 0 3908 0,0 LC 74 0 0 5211 9491 655 0 0 0 0 15357 66,1 LC 75 0 0 4399 <td>66</td> <td>0</td> <td>54</td> <td>3520</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>3574</td> <td>0,0</td> <td>LC</td>	66	0	54	3520	0	0	0	0	0	0	0	3574	0,0	LC
69 0 1818 5947 917 0 0 0 0 0 8682 10,6 LC 70 0 0 6037 151 0 0 0 0 0 6188 2,4 LC 71 0 6143 8380 0 0 0 0 0 0 14523 0,0 LC 72 0 1165 617 0 0 0 0 0 0 1782 0,0 LC 73 0 25 3883 0 0 0 0 0 3908 0,0 LC 74 0 0 5211 9491 655 0 0 0 0 15357 66,1 LC 75 0 0 439 0 0 0 0 0 439 0,0 LC 76 0 0 19 4362 30	67	0	3007	10474	0	0	0	0	0	0	0	13481	0,0	LC
70 0 0 6037 151 0 0 0 0 0 6188 2,4 LC 71 0 6143 8380 0 0 0 0 0 0 14523 0,0 LC 72 0 1165 617 0 0 0 0 0 0 1782 0,0 LC 73 0 25 3883 0 0 0 0 0 0 3908 0,0 LC 74 0 0 5211 9491 655 0 0 0 0 15357 66,1 LC 75 0 0 439 0 0 0 0 0 439 0,0 LC 76 0 0 19 4362 30 0 0 0 0 0 4411 99,6 VU 77 0 0 3 <	68	0	0	1601	302	0	0	0	0	0	0	1903	15,9	LC
71 0 6143 8380 0 0 0 0 0 0 14523 0,0 LC 72 0 1165 617 0 0 0 0 0 0 0 1782 0,0 LC 73 0 25 3883 0 0 0 0 0 0 3908 0,0 LC 74 0 0 5211 9491 655 0 0 0 0 15357 66,1 LC 75 0 0 439 0 0 0 0 0 439 0,0 LC 76 0 0 19 4362 30 0 0 0 0 4411 99,6 VU 77 0 0 3 2096 0 0 0 0 0 2099 99,9 VU	69	0	1818	5947	917	0	0	0	0	0	0	8682	10,6	LC
72 0 1165 617 0 0 0 0 0 0 1782 0,0 LC 73 0 25 3883 0 0 0 0 0 0 3908 0,0 LC 74 0 0 5211 9491 655 0 0 0 0 15357 66,1 LC 75 0 0 439 0 0 0 0 0 439 0,0 LC 76 0 0 19 4362 30 0 0 0 0 4411 99,6 VU 77 0 0 3 2096 0 0 0 0 0 2099 99,9 VU	70	0	0	6037	151	0	0	0	0	0	0	6188	2,4	LC
73 0 25 3883 0 0 0 0 0 0 3908 0,0 LC 74 0 0 5211 9491 655 0 0 0 0 15357 66,1 LC 75 0 0 439 0 0 0 0 0 0 439 0,0 LC 76 0 0 19 4362 30 0 0 0 0 4411 99,6 VU 77 0 0 3 2096 0 0 0 0 0 2099 99,9 VU	71	0	6143	8380	0	0	0	0	0	0	0	14523	0,0	LC
74 0 0 5211 9491 655 0 0 0 0 15357 66,1 LC 75 0 0 439 0 0 0 0 0 0 439 0,0 LC 76 0 0 19 4362 30 0 0 0 0 4411 99,6 VU 77 0 0 3 2096 0 0 0 0 0 2099 99,9 VU	72	0	1165	617	0	0	0	0	0	0	0	1782	0,0	LC
75 0 0 439 0 0 0 0 0 0 439 0,0 LC 76 0 0 19 4362 30 0 0 0 0 0 4411 99,6 VU 77 0 0 3 2096 0 0 0 0 0 2099 99,9 VU	73	0	25	3883	0	0	0	0	0	0	0	3908	0,0	LC
76 0 0 19 4362 30 0 0 0 0 4411 99,6 VU 77 0 0 3 2096 0 0 0 0 0 2099 99,9 VU	74	0	0	5211	9491	655	0	0	0	0	0	15357	66,1	LC
77 0 0 3 2096 0 0 0 0 0 2099 99,9 VU	75	0	0	439	0	0	0	0	0	0	0	439	0,0	LC
	76	0	0	19	4362	30	0	0	0	0	0	4411	99,6	VU
78 0 0 0 256 13 0 0 0 0 269 100,0 VU	77	0	0	3	2096	0	0	0	0	0	0	2099	99,9	VU
	78	0	0	0	256	13	0	0	0	0	0	269	100,0	VU

						1	1		1	1		T	1
79	0	0	1335	0	0	0	0	0	0	0	1335	0,0	LC
80	0	0	1190	3650	0	0	0	0	0	0	4840	75,4	NT
81	0	1028	3424	0	0	0	0	0	0	0	4452	0,0	LC
82	0	0	9631	2790	0	0	0	0	0	0	12421	22,5	LC
83	0	0	0	1241	42	0	0	0	0	0	1283	100,0	VU
84	0	0	1032	3602	0	0	0	0	0	0	4634	77,7	NT
85	0	0	19834	5700	0	0	0	0	0	0	25534	22,3	LC
86	0	0	6662	14218	0	0	0	0	0	0	20880	68,1	LC
87	0	0	13	1181	0	0	0	0	0	0	1194	98,9	VU
88	0	0	798	8797	0	0	0	0	0	0	9595	91,7	VU
89	0	0	1763	4161	0	0	0	0	0	0	5924	70,2	LC
90	0	3893	2452	0	0	0	0	0	0	0	6345	0,0	LC
91	0	7127	604	0	0	0	0	0	0	0	7731	0,0	LC
92	0	7870	2498	0	0	0	0	0	0	0	10368	0,0	LC
93	0	3192	1874	0	0	0	0	0	0	0	5066	0,0	LC
94	0	17347	40675	57	0	0	0	0	0	0	58079	0,1	LC
95	0	15881	111	0	0	0	0	0	0	0	15992	0,0	LC
96	0	5995	2199	0	0	0	0	0	0	0	8194	0,0	LC
97	0	12526	2198	0	0	0	0	0	0	0	14724	0,0	LC
98	0	7180	880	0	0	0	0	0	0	0	8060	0,0	LC
99	0	613	3128	0	0	0	0	0	0	0	3741	0,0	LC
100	0	318	1579	0	0	0	0	0	0	0	1897	0,0	LC
101	0	6817	1015	0	0	0	0	0	0	0	7832	0,0	LC
102	0	90	1867	0	0	0	0	0	0	0	1957	0,0	LC
103	0	241	4813	0	0	0	0	0	0	0	5054	0,0	LC
104	0	2057	2898	0	0	0	0	0	0	0	4955	0,0	LC
105	0	1986	8574	0	0	0	0	0	0	0	10560	0,0	LC
106	0	2810	12236	0	0	0	0	0	0	0	15046	0,0	LC
107	0	0	5108	0	0	0	0	0	0	0	5108	0,0	LC
108	0	0	4799	0	0	0	0	0	0	0	4799	0,0	LC
109	14750	4520	543	56	0	0	0	0	0	0	19869	0,3	LC
110	1390	15021	1052	0	0	0	0	0	0	0	17463	0,0	LC
111	0	0	76	0	0	0	0	0	0	0	76	0,0	LC
112	1	30	1653	3921	16	0	0	0	0	0	5621	70,0	LC
113	0	1063	7025	4615	62	3	0	0	0	0	12768	36,7	LC
114	0	0	135	2028	529	21	0	0	0	0	2713	95,0	VU
115	0	0	48	812	0	0	0	0	0	0	860	94,4	VU
116	0	0	0	25	0	0	0	0	0	0	25	100,0	VU
117	0	15593	3581	0	0	0	0	0	0	0	19174	0,0	LC
118	2	2727	2470	0	0	0	0	0	0	0	5199	0,0	LC
119	7	5444	1573	31	0	0	0	0	0	0	7055	0,4	LC

120	0	0	222	1421	87	1	0	0	0	0	1731	87,2	VU
121	0	83	5930	390	0	0	0	0	0	0	6403	6,1	LC
122	0	712	1924	0	0	0	0	0	0	0	2636	0,0	LC
123	0	0	1194	6534	0	0	0	0	0	0	7728	84,5	VU
124	0	698	10294	0	0	0	0	0	0	0	10992	0,0	LC
125	0	2146	12352	0	0	0	0	0	0	0	14498	0,0	LC
126	0	3089	8201	0	0	0	0	0	0	0	11290	0,0	LC
127	0	0	1165	0	0	0	0	0	0	0	1165	0,0	LC

Tabla 7. Valores definidos para el cálculo del sub criterio C2 (Estrés Térmico Invernal)

ID Piso de		Estré	s Térmico	Inverna	I - Conte	o de ce	eldas p	or dec	il		Celdas	Porcentaje	Evaluación
vegetación	0-0,1	01-	0,2-	0,3-	0,4-	0,5-	0,6-	0,7-	0,8-	0,9-	Total	umbral	C2
		0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1			
1	0	0	362	2686	0	0	0	0	0	0	3048	88,1	VU
2	329	2699	34598	32031	0	0	0	0	0	0	69657	46,0	LC
3	17	8173	3064	84	0	0	0	0	0	0	11338	0,7	LC
4	3	22	108	547	0	0	0	0	0	0	680	80,4	VU
5	0	1	7	1038	0	0	0	0	0	0	1046	99,2	LC
6	0	0	578	3728	0	0	0	0	0	0	4306	86,6	LC
7	0	0	826	741	0	0	0	0	0	0	1567	47,3	LC
8	0	0	45	0	0	0	0	0	0	0	45	0,0	LC
9	0	0	676	331	0	0	0	0	0	0	1007	32,9	LC
10	0	0	360	564	0	0	0	0	0	0	924	61,0	LC
11	0	0	3343	31	0	0	0	0	0	0	3374	0,9	LC
12	0	0	1545	961	0	0	0	0	0	0	2506	38,3	LC
13	0	0	2162	0	0	0	0	0	0	0	2162	0,0	LC
14	0	0	983	0	0	0	0	0	0	0	983	0,0	LC
15	0	0	14989	8987	0	0	0	0	0	0	23976	37,5	LC
16	0	0	1671	9	0	0	0	0	0	0	1680	0,5	LC
17	0	0	3736	207	0	0	0	0	0	0	3943	5,2	LC
18	179	297	9214	7099	0	0	0	0	0	0	16789	42,3	LC
19	0	0	4629	1634	0	0	0	0	0	0	6263	26,1	LC
20	0	0	3716	5872	0	0	0	0	0	0	9588	61,2	LC
21	0	0	1459	0	0	0	0	0	0	0	1459	0,0	LC
22	24046	3497	1836	1405	353	0	0	0	0	0	31137	5,6	LC
23	1699	3866	4107	5209	4081	0	0	0	0	0	18962	49,0	LC
24	224	752	14371	436	0	0	0	0	0	0	15783	2,8	LC
25	0	0	2322	10017	1000	0	0	0	0	0	13339	82,6	LC
26	2835	1333	617	65	0	0	0	0	0	0	4850	1,3	LC
27	0	0	904	1855	0	0	0	0	0	0	2759	67,2	LC
28	0	0	305	394	0	0	0	0	0	0	699	56,4	LC
29	0	0	165	662	0	0	0	0	0	0	827	80,0	LC
30	0	0	619	1550	0	0	0	0	0	0	2169	71,5	LC
31	71	313	613	502	0	0	0	0	0	0	1499	33,5	LC
32	0	0	2629	2105	0	0	0	0	0	0	4734	44,5	LC
33	0	0	4	1436	0	0	0	0	0	0	1440	99,7	VU
34	0	142	4615	0	0	0	0	0	0	0	4757	0,0	LC
35	0	455	13061	0	0	0	0	0	0	0	13516	0,0	LC
36	0	0	2687	0	0	0	0	0	0	0	2687	0,0	LC
37	0	0	2646	4734	0	0	0	0	0	0	7380	64,1	LC

38	161	959	3931	1026	0	0	0	0	0	0	6077	16,9	LC
39	0	0	6786	4	0	0	0	0	0	0	6790	0,1	LC
40	0	381	6783	0	0	0	0	0	0	0	7164	0,0	LC
41	16	70	4181	1215	0	0	0	0	0	0	5482	22,2	LC
42	0	4114	4189	0	0	0	0	0	0	0	8303	0,0	LC
43	0	2266	9243	0	0	0	0	0	0	0	11509	0,0	LC
44	0	2	2379	89	0	0	0	0	0	0	2470	3,6	LC
45	0	5258	1502	0	0	0	0	0	0	0	6760	0,0	LC
46	0	0	1215	0	0	0	0	0	0	0	1215	0,0	LC
47	2	9751	4019	0	0	0	0	0	0	0	13772	0,0	LC
48	76	863	6022	0	0	14	0	0	0	0	6975	0,2	LC
49	0	948	557	0	0	0	0	0	0	0	1505	0,0	LC
50	0	1952	1631	0	0	0	0	0	0	0	3583	0,0	LC
51	0	19	1882	20	0	0	0	0	0	0	1921	1,0	LC
52	0	3824	0	0	0	0	0	0	0	0	3824	0,0	LC
53	0	8673	2883	0	0	0	0	0	0	0	11556	0,0	LC
54	1	28107	1203	0	0	0	0	0	0	0	29311	0,0	LC
55	0	6222	0	0	0	0	0	0	0	0	6222	0,0	LC
56	0	2562	0	0	0	0	0	0	0	0	2562	0,0	LC
57	42	348	1081	0	0	0	0	0	0	0	1471	0,0	LC
58	123	2790	6243	0	0	0	0	0	0	0	9156	0,0	LC
59	206	2606	1266	0	0	0	0	0	0	0	4078	0,0	LC
60	788	735	119	0	0	0	0	0	0	0	1642	0,0	LC
61	2557	2118	534	0	0	0	0	0	0	0	5209	0,0	LC
62	42	2419	4578	0	0	0	0	0	0	0	7039	0,0	LC
63	94	24402	839	0	0	0	0	0	0	0	25335	0,0	LC
64	181	2372	4326	0	0	0	0	0	0	0	6879	0,0	LC
65	1562	11965	757	0	0	0	0	0	0	0	14284	0,0	LC
66	0	3574	0	0	0	0	0	0	0	0	3574	0,0	LC
67	464	13017	0	0	0	0	0	0	0	0	13481	0,0	LC
68	5	1702	196	0	0	0	0	0	0	0	1903	0,0	LC
69	5698	2984	0	0	0	0	0	0	0	0	8682	0,0	LC
70	0	5270	918	0	0	0	0	0	0	0	6188	0,0	LC
71	590	13933	0	0	0	0	0	0	0	0	14523	0,0	LC
72	0	1782	0	0	0	0	0	0	0	0	1782	0,0	LC
73	0	3908	0	0	0	0	0	0	0	0	3908	0,0	LC
74	0	13860	1497	0	0	0	0	0	0	0	15357	0,0	LC
75	0	439	0	0	0	0	0	0	0	0	439	0,0	LC
76	410	1973	2028	0	0	0	0	0	0	0	4411	0,0	LC
77	3	1624	472	0	0	0	0	0	0	0	2099	0,0	LC
78	184	79	6	0	0	0	0	0	0	0	269	0,0	LC

79	0	1335	0	0	0	0	0	0	0	0	1335	0,0	LC
80	0	4749	91	0	0	0	0	0	0	0	4840	0,0	LC
81	0	4452	0	0	0	0	0	0	0	0	4452	0,0	LC
82	721	11700	0	0	0	0	0	0	0	0	12421	0,0	LC
83	339	743	201	0	0	0	0	0	0	0	1283	0,0	LC
84	0	4196	438	0	0	0	0	0	0	0	4634	0,0	LC
85	1505	23629	400	0	0	0	0	0	0	0	25534	0,0	LC
86	16632	4204	44	0	0	0	0	0	0	0	20880	0,0	LC
87	19	1175	0	0	0	0	0	0	0	0	1194	0,0	LC
88	161	9417	17	0	0	0	0	0	0	0	9595	0,0	LC
89	0	5924	0	0	0	0	0	0	0	0	5924	0,0	LC
90	1076	5269	0	0	0	0	0	0	0	0	6345	0,0	LC
91	7627	104	0	0	0	0	0	0	0	0	7731	0,0	LC
92	9879	489	0	0	0	0	0	0	0	0	10368	0,0	LC
93	54	5012	0	0	0	0	0	0	0	0	5066	0,0	LC
94	57536	543	0	0	0	0	0	0	0	0	58079	0,0	LC
95	15992	0	0	0	0	0	0	0	0	0	15992	0,0	LC
96	8190	4	0	0	0	0	0	0	0	0	8194	0,0	LC
97	14677	47	0	0	0	0	0	0	0	0	14724	0,0	LC
98	123	350	635	4734	2218	0	0	0	0	0	8060	86,3	VU
99	0	0	0	86	3655	0	0	0	0	0	3741	100,0	VU
100	0	0	0	56	1841	0	0	0	0	0	1897	100,0	VU
101	0	0	1	1110	6721	0	0	0	0	0	7832	100,0	VU
102	0	0	0	0	1957	0	0	0	0	0	1957	100,0	VU
103	0	0	30	557	4467	0	0	0	0	0	5054	99,4	VU
104	0	0	0	211	4744	0	0	0	0	0	4955	100,0	VU
105	0	0	0	1802	8758	0	0	0	0	0	10560	100,0	VU
106	0	0	0	15	15031	0	0	0	0	0	15046	100,0	VU
107	0	0	0	1	5107	0	0	0	0	0	5108	100,0	VU
108	0	0	16	227	4556	0	0	0	0	0	4799	99,7	VU
109	9	170	11615	7878	197	0	0	0	0	0	19869	40,6	LC
110	0	0	1045	14580	1838	0	0	0	0	0	17463	94,0	VU
111	0	0	76	0	0	0	0	0	0	0	76	0,0	LC
112	1402	2574	1618	27	0	0	0	0	0	0	5621	0,5	LC
113	319	3060	8761	625	0	3	0	0	0	0	12768	4,9	LC
114	1202	1198	292	0	0	21	0	0	0	0	2713	0,8	LC
115	2	168	690	0	0	0	0	0	0	0	860	0,0	LC
116	0	25	0	0	0	0	0	0	0	0	25	0,0	LC
117	17794	1380	0	0	0	0	0	0	0	0	19174	0,0	LC
118	0	0	10	4457	732	0	0	0	0	0	5199	99,8	VU
119	2	161	5733	1159	0	0	0	0	0	0	7055	16,4	LC

120	0	99	1631	0	0	1	0	0	0	0	1731	0,1	LC
121	105	5814	484	0	0	0	0	0	0	0	6403	0,0	LC
122	2471	165	0	0	0	0	0	0	0	0	2636	0,0	LC
123	0	5039	2689	0	0	0	0	0	0	0	7728	0,0	LC
124	0	10992	0	0	0	0	0	0	0	0	10992	0,0	LC
125	0	14498	0	0	0	0	0	0	0	0	14498	0,0	LC
126	0	11290	0	0	0	0	0	0	0	0	11290	0,0	LC
127	0	1165	0	0	0	0	0	0	0	0	1165	0,0	LC